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Abstract 

In this paper we describe a method for 3D body scanning by aligning depth and color scans which 
were taken around a human body with a Kinect camera. The Kinect [18] camera is a “controller-free 
gaming and entertainment experience” by Microsoft for the Xbox 360 video game platform. It delivers 
depth and color scans at video rate. The proposed scanning solution makes 3D scanning technology 
more accessible to end-users, since it is easy-to-use and cost-effective. With this technique, 3D 
models could become a much more widely used asset, just as image and video data are today. This 
could open the door for many new applications, for instance in community web platforms or online 
shopping. 
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1. Introduction 

Nowadays, 3D geometry models of real world objects are essential for many application scenarios, 
such as design and virtual prototyping, quality assurance, or applications in visual media, such as 
games, virtual worlds and movie special effects. Existing 3D scanning technology are specialized and 
complex optical systems consisting of multiple cameras and structured light or lasers beamers. Even 
though they produce data of high quality, they are expensive and often require expert knowledge for 
their operation. They are reserved to the professional and semi-professional market and are not 
affordable by end-users. On the other hand, if easy-to-operate and cheap 3D scanners were more 
usable and low-cost, 3D models could turn into a much more widely used asset, just as image and 
video data are today. This could open the door to many new applications, for instance in community 
web platforms or online shopping. 
In this paper, we propose a new easy-to-use 3D object scanning approach based on a single Kinect 
camera. The Kinect has a variety of advantages over existing 3D scanning technologies: It can 
measure depth and color at video rate simultaneously, what makes it very suitable for fast object 
scanning. The depth sensor does not interfere with the scene in the visual spectrum. Finally, its usage 
is not different from a video camera; end-users intuitively deal with it and are able to collect data with 
only a few explanations. However the development of a scanning system with a single Kinect is not 
straight forward and many algorithmic challenges must be overcome. The main two difficulties are the 
following: 

1. The depth image has a low X/Y resolution and low accuracy, a strong random noise.  
2. The single views must be aggregated and the model must be correctly closed after a 360° 

scan.  
 

In this paper we show that an appropriate combination of methods for image enhancement and scan 
alignment allows the generation of a closed 3D shape model of a given object with reasonable quality. 
No specific capturing setting is required: the Kinect is hold in the hand and moved freely around the 
object. 
The overall processing pipeline consists of three main steps, as illustrated in figure 2: 

1. Super-resolution: the Kinect delivers synchronized RGB and depth images. Intermediate 
super-resolution color and depth frame are first created using the algorithm described in [2]. 

2. Loop closing: a probabilistic scan alignment method that extends [1] by explicitly performing 
3D loop closure has been developed. This algorithm delivers closed 3D models while handling 
the inherent systematic bias on-the-fly. 

3. Non-rigid registration: In order to correct residual errors due for example to small human’s 
arms and legs movements, a non-rigid registration is applied in the last step of the processing. 
Without assuming a systematic bias as in [1] we define different parameters for each pixel 
independently. 
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Fig1, A typical camera path: The dotted segments are the frame chunks C from which super-resolution depth scans 

are computed. 

 

 

Fig2, Outline of our processing pipeline. 

 

In section 2, we present the super-resolution processing pipeline in details; the global loop closure and 
non-rigid registration algorithms are described in section 3, and 4 respectively. Finally, reconstruction 
results are presented in section 5; the work is concluded in section 6. 

2. Related work 

Most commercial systems for 3D shape scanning are based on either active systems, such as 
structured light or laser stripes scanners, or passive image-based systems, which uses the images 
directly. A recent overview of the last approach can be found in [12][14] . The last category concerns 
the 3D or depth camera, which deliver depth images at video rate. In contrast to Time of Flight (ToF) 
cameras, the Kinect provides rather clean data of relatively low random noise and systematic error. 
With such data, local rigid alignment techniques, such as Iterative Closest Points (ICP) and its variants 
[5] or global rigid alignment techniques, [3][4][13] can be used to register the scans against each other. 
Then, a merging procedure [10] can be applied to build a single 3D mesh. Hand-held scanners have 
been proposed where the camera can be freely moved around an object (or vice versa), e.g. in [16]. 
Our work supports both hand-held scanning and scanning under controlled motion, with e.g. a 
turntable. A relatively simple 3D scanner has been proposed by Bouguet et al [6] who measures the 
3D shape by recording a shadow casted by a rod moved over the object. However, this approach is 
suitable only for static set-up, and freely motion around an object is not possible. An alternative to 
active shape scanning are passive image-based approaches, such as stereo [17] or variants of 
shape-from-silhouette reconstruction [16]. Unfortunately, these algorithms often suffer from errors due 
to inaccurate image correspondences or the inability to capture concavities. 
So far, Kinect cameras have not been used as sensors for 3D object scanning, even though they have 
a variety of advantages over the above technologies. This is mainly due to the high noise level which 
makes direct application of established filtering and alignment techniques infeasible. In this paper, we 
show that reliable shape capture can be achieved with the Kinect camera only. Related work to these 
methods is the method by Kil et al. [11]. Our approach however extends previous work on probabilistic 
non-rigid alignment of pairs of scans [15] into a global method. Suitable rigid and non-rigid scan 
alignment is achieved by explicitly incorporating specific noise characteristics, based on previous work 
[1]. 
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3. Super-resolution 

A super-resolution algorithm, similar the LidarBoost approach [2], is applied to each chunk of frames. 
The result is a high-resolution depth map aligned to the center frame of the chunk. In the following we 
briefly describe the core concepts of LidarBoost on which our new super-resolution approach relies, 
and refer the reader to [2] for more detail. We then extend the LidarBoost concepts with a new 
regularization framework that yields better results. First, all depth maps in the chunk are aligned to the 
center frame using 3D optical flow. This is sufficiently accurate since the maximum viewpoint 
displacement throughout the entire chunk is typically one to two depth pixels. LidarBoost method can 

extract a high-resolution denoised center depth map lH . Based on LidarBoost, we add the color RGB 

information as a second data term to improve the depth super-resolution frame by solving an 
optimization problem of the form:  

_ ( ) ( )min , , ,
l

depth data l l l reg l
H
E L L H E H   (1) 

Here, ( ) ( ), ,l lL L are the raw depth maps of one chunk aligned to the center. _depth dataE measures 

the agreement of lH  with the aligned low resolution maps; unreliable depth pixels with low amplitude 

are discarded. regE is a feature-preserving smoothing regularization term tailored to raw data as in [2]. 

The proposed super-resolution approach is based on a similar energy and uses the same definition as 
LidarBoost: 
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And each , ( , )u vG l m  is a finite difference defined as follows: 
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Our implementation uses the Euler-Lagrange equation to transform the optimization problem into a 
linear equation system, which we solve using Gauss-Seidl method for linear systems. We have 
implemented this in C++ and Table 2 reports about the runtimes. Note the significant improvement in 
runtime of about 30 seconds compared to earlier LidarBoost implementations that took up to two hours 
for comparable scenes. The result of the super-resolution are shown in Figure 3, Mannequin and the 
woman sitting, left is the one raw frame data, right is the super-resolution result. Our algorithm can 
smooth the raw data, meanwhile, keep the detail structure. 
 
 

        
Fig3. Raw data and super-resolution results for the Mannequin and sitting woman. 
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4. Loop Closure Alignment based on the rigid and non-rigid transformation 

In the scan alignment step, we don't use the 3 3 matrix R and 3 1  T , which parameterizes 12 

degree of freedom. Instead we use the exponential map in conformal geometric algebra [8][9]. The 
idea is to get linear equations with respect to the generators of the motor. The exponential 
representation of motors is used, and the Taylor series expansion of first order is applied for 
approximation. This leads to a mapping of the above mentioned global motion transformation to a twist 
representation, which allows for incremental changes of pose. The Euclidean transformation of a 

point X in conformal space caused by the motor M is approximated as: 
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Setting: :l l and :m m , results in: 

( · )MXM E e x l x m   (6) 

There are two parameters l andm , i.e. 6 degree of freedom to translate the 3D point. From the solution 
of the system of equations, the motion parameters ,RT can easily be recovered. 

Next, we will present the loop closure alignment problem, based on the probabilistic simultaneous scan 
alignment. 

There are K  high-resolution 3D point cloud frames captured for one model object. For each 

corresponding frame f , ,{ 1, , }f f j fY y j N  and frame g , ,{ 1, , }g g j gY y g N  we give 

the new energy function sum all of the corresponding frames, which is similar the energy function in [1]. 
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     (7) 

In this equation, d is the distribution of non-rigid transformation distance; d is different for each frame; 

,f ny stands for the 3D point position in frame f ; fM stands for the transformation for the frame f . 

Experimentally, we could verify that a simultaneous optimization of all alignment parameters often fails 
to converge to a suitable minimum. Instead, we propose to alternate between optimizing 

for 1, KM M with fixed 1,1 1, ,, ,O KOd d d (case I) as Sect.3.1, and optimizing for 1,1 1, ,, ,O KOd d d with 

fixed 1, KM M as Sect.3.2 below. 

The complete working pipeline for aligning all 3D point clouds frames Y is given in Table 1 as 
pseudo-code. The optimizer terminates if there is no further improvement or the maximum number of 

iterations has been reached. The result is the set of rigid alignment parametersM , 1, ,K , as 

well as the systematic bias values 1,1 1, ,, ,O KOd d d , 
1

( , , )
Ky yO max N N . 
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Table1. Loop closure scan alignment 

 Initialize: Local rigid processing, pair-wise corresponding 3,1, get the initial position for each 
frame and the corresponding points for each pair. 

 Repeat until no further improvement or max. iterations : 
 Rigid registration, for all pairs frame ,f g (case I): 

1. 2 update: according to Eq. (9) 
2. E-step: ComputeP for Eq. (11) 

3. M-step: Solve the transformation for each frame 1, NM M by minimizing Eq.(8) as 

Eq.(10) 
 Non-rigid registration, for all pairs frame ,f g (case II): 

1. 2 update: according to Eq. (14) 
2. E-step: ComputeP for Eq. (16) 

3. M-step: Solve the transformation for each frame 1,1 1, ,, ,O KOd d d by minimizing 

Eq.(12) as Eq.(15) 

 Poisson Reconstruction for the final model. 

 

4.1 Rigid part 

There are two steps in the rigid transformation: Local rigid part and global rigid part. The local rigid 
transformation part is calculated with the ICP algorithm to find an initial corresponding frame. In this 
step, registration is done pair-wise [7]. 

 Step 1: Calculate ICP for one frame to the other frames. 

 Step2: Justification for labeling matches 'correct' or 'incorrect'. 
 
From the local rigid processing, we can get the pair-wise registration, (e.g. for frame f , there arew  

frames 1, wg g , corresponding to frame f ), the corresponding points for each pair frame and the initial 

position for each frame. The results are shown in Fig.4 (brown color object). The object is not closed 
because there is a strong random noise of raw data for each frame. We need the global rigid 
processing and the non-rigid processing to get a correctly closed 360° model. For the global rigid part, 

optimizing for 1, KM M with fixed 1,1 1, ,, ,O KOd d d (case I) in Eq. (7), the energy function for the 

global rigid part is: 
2

, ,
1
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2
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For each corresponding pair frame (get it from the local rigid part, frame ,f g are the corresponding 

frames), ,f ny is the 3D point in frame f . ,g my is the 3D point in frame g . The variance ,f g of the mixture 

components is estimated using: 
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Using the EM algorithm to minimize the Energy function to get the exponential transform for each 

frame 1, KM M : 
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Two issues which should be considered carefully: 1) Because we use the first order of Taylor series 

expansion to express the fM and gM , we need three iterations to get the final motorM . 2) fN  is the 

point number of the frame f , gN is the point number of the frame g . In order to speed-up the algorithm, 

we can just select Z nearest points in frame g corresponding one point in frame f ; in the real 

experiments, we define 20gN Z in Eq. (10) and Eq. (11). 

The results are shown in the Fig.4, the blue color object. The point cloud is correctly closed. Matching 
error from frame to frame remains because the processing is done assuming rigid registration. We 
need to use the non-rigid transformation to correct the error between frames. 
 

4.2 Non-rigid part 

We know the rigid transformation 1, KM M  from the global rigid part. Next we need to estimate the 

non-rigid transformation part 1,1 1, ,, ,O N Od d d  for each frame. The Energy function for the non-rigid 

part is: 
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Here, ,'f ny  and ,'f nV  are translated by the fM , ,'g my  and ,'g mV  is translated by the gM  

calculated in Sec. 3.1. 
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The variance ,f g  of the mixture components is estimated using: 

22
, , , , , , ,

1 1

1
' ' ' '

f gN N

f g f n f n f n g m g m g m
n mf g

y V yd dV
N N

 (14) 

Minimize the energy function with the EM algorithm: 
2
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Please note that for efficiency reasons, we don't evaluate non rigidQ  for all 3D points, but only for a 

subset of samples from frame f and the frame g . We can just select Z nearest points in 

frameg corresponding one point in frame f , in the real experiments, we define 100gN Z in Eq. 

(15) and Eq. (16). Also, for camera paths covering a larger viewpoint range, we perform several global 
alignments to several reference scans, such that sufficient overlap is guaranteed. 
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The results of non-rigid registration are shown in Figure 5, Mannequin and the woman sitting, left is 
without non-rigid registration, right is with non-rigid registration. Our algorithm can remove most of the 
outliers and noises by drafting the 3d points frame by frame. We have implemented the rigid and 
non-rigid algorithm in C++  - Table 2 reports runtimes. 

     
Fig4.Result of the local pair wise alignment and global loop closure alignment. 

 

 

        
Fig5. Without non-rigid and with non-rigid results 

 

5. Result 

The human body is turned in front of a static Kinect continuously about 30 sec. For each body, we 
capture about 1200 frames (For each second, there are 30-50 frames captured by Kinect). Select 360 
frames as the useful original data, get one super-resolution frame for each 10 raw frames, then align 
with global and non-rigid approach for these 36 super-resolution frames, calculate mesh with Poisson 
method last. The final results are complete model with smooth surfaces, and still a lot of detail 
structures, e.g. the fold of clothes, the hair, the face and so on, as figure 6 shows. The whole 
processing time for each human body is about 5 min under C++, the PC setting is Intel(R) CPU 
2.67GHz, 12GB RAM memory, Windows 7 system. The running times for each object are shown in the 
Table 1. 
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(a)Mannequin:  Height 79cm 

 
(b)Snowman: Height 82cm 

 

 
(c)Standing woman:  Height 160cm 

 
(d)Sitting woman: Height 78cm 

Fig 6. Kinect 3D reconstruction results 
 

Table 2. Running time for each processing ste. 

 Key 
Frames 

Super- 
resolution 

Rigid 
Alignment 

Non-rigid 
Alignment 

Poisson 
Recon 

All 

Mannequin 36 32sec 132sec 72sec 79sec 315sec 

Snowman 35 31sec 121sec 61sec 68sec 281sec 

Human 
standing 

30 28sec 118sec 66sec 66sec 278sec 

Human sitting 32 29sec 119sec 71sec 77sec 296sec 

 

6. Conclusion 

In this paper we demonstrated that 3D shape models of static objects can also be acquired with a 
Kinect sensor that, at first glance, seems completely inappropriate for the task. The key in making this 
possible is the effective combination of 3D super-resolution with a new probabilistic multi-scan 
alignment algorithm tailored to Kinect cameras. In future, we plan to investigate approaches for 
real-time shape scanning, as well as incorporation of more sophisticated noise models into the 
reconstruction framework. 
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