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Abstract 
Many biomechanical analyses rely on the availability of reliable body segment inertia parameter (BSIP) 
estimates. Current processes to obtain these estimates involve many time consuming manual 
measurements of the human body, used in conjunction with models or equations. While such methods 
have become the accepted standard they contain many inherent errors arising from manual 
measurement and significant assumptions made in the underlying data used to form the models and 
equations. Presented here is an alternative approach to obtaining reliable estimates of body segment 
inertia parameters through the use of the Microsoft Kinect sensor. A 3D scanning system was 
developed, comprising four Kinects aligned to a single global coordinate system using rigid body 
calibration and random sample consensus (RANSAC) optimisation. The system offers the advantage 
of obtaining BSIP estimates in a single scanning operation of around three seconds, much quicker 
than the circa thirty minutes of manual measurements required for existing BSIP estimation methods. 
The results obtained with the system show a mean error of 0.04% and a standard deviation of 2.11% in 
volumetric measurements of a torso manikin, suggesting comparable and in many cases, greater 
accuracy volumetric estimates than a commonly used geometric BSIP model. Further work is needed 
to extend this study to include a full range of BSIP measurements across more of the bodies segments 
and to include scanning of living human subjects. However, this initial study suggests great potential 
for a low cost system that can provide quick and accurate subject specific BSIP estimates.  
 
Keywords: Anthropometrics, body measurement, 3D body scanning, body segment inertia 
parameters, rigid transformation, geometric models, Kinect, RANSAC 
 
1. Introduction 
 

Within the field of biomechanics, body segment inertia parameters (BSIPs) are a very important 
measure due to their use in many biomechanical analyses. BSIPs commonly of interest are; mass, 
centre of mass and principal moments of inertia. There currently exists a number of methods that can 
be used to obtain such parameters, with common methods being those based on cadaver studies [1], 
mass scanning methods [2] and geometric models [3]. 
 

Early attempts to obtain BSIP estimates relate as far back as 1860 [4], with the most significant 
advancement being the work by Dempster [1]. Dempster’s study collected measurement data from 
eight complete cadavers by dividing up the body into key segments to allow the calculation of 
segmental volume, mass, centre of gravity and moment of inertia. With this information, Dempster [1] 
created tables that enable segment mass to be calculated from total body mass and centre of mass 
and moment of inertia calculated from segment length. A number of questions regarding the validity of 
the work by Dempster have arisen in the years following due to the small sample size, meaning the 
model produced by Dempster may not be a true depiction of the population. Similarly, the model may 
be invalid when applied to female subjects or different ages. 
 

Another approach for obtaining BSIP estimates adopts a medical imaging approach, using scanners 
such as MRI or CT to determine the mass and volume of the bodies segments, from which BSIPs can 
be estimated. Commonly accepted work in this field is by Zatsiorsky [2] who used a sample of 100 
male and 15 female living subjects. The subjects were scanned using gamma mass scanning to 
estimate mass, centre of mass and principal moments of inertia for 15 body segments. Importantly, the 
subjects used by Zatsiorsky were from mixed genders and included subjects younger than the 
cadavers used in studies by Dempster et al. Zatsiorsky [2] subsequently created regression equations 
to allow the model to be used by other people in their own other studies. 
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Whilst the approaches adopted by Dempster [1] and Zatsiorsky [2] have their own unique advantages, 
as highlighted by [5], many of the subjects used in the studies were heavily biased towards a specific 
gender or population type, possibly leading to errors when the models are applied to subjects from 
different populations.  
 

The work by Yeadon [3] and [6] was one of the first studies to recognise this problem and highlighted 
the need for a method to obtain accurate subject specific BSIP measurements. To address this issue, 
Yeadon devised a geometric modelling approach which has become one of the most commonly used 
approaches to estimating BSIPs.  
 

The geometric model produced by Yeadon [6] splits the human body into 40 segments, assuming a 
uniform density in each segment. Each segment is defined as a stadium solid from which volume and 
hence mass can be estimated. Stadium solids are defined by segment end point measurements of 
diameter, width and height, manually taken from the body using anatomical callipers and 
anthropometric measuring tapes. 
 

Geometric methods of obtaining BSIPs can be very time consuming, for example, all 95 
measurements required for Yeadon’s model can take around 40 minutes of the subjects time. Methods 
based on regression equations and mathematical models require fewer, simpler measurements, but as 
highlighted by Durkin and Dowling [7], such models are highly simplified representations of the human 
body so will always be subject to a degree of error. 
 

A study by Durkin and Dowling [7] investigated the accuracy of commonly used BSIP models by 
comparing the measurements with those from dual energy x-ray scans (DEXA). Table 1 highlights the 
percentage difference in mass of the thigh segment between the models and DEXA scans. The results 
below are an excerpt from the paper by Durkin and Dowling [7] and relate to their sample group of 
19-30 year old males. 
 

Table 1. Percentage differences in common BSIP models when compared to DEXA scans. 

 Durkin [1] Winter Zatsiorsky 
(Regression) [2] 

Zatsiorsky 
(Geometric) [2] 

Hanavan 

% Error in 
Mass of Thigh 

7.91 21.30 16.08 8.51 21.21 

 
The results suggest considerable differences when compared to the DEXA scan, but also a 
considerable inter-model variance. As would be expected, this percentage error varies significantly 
depending upon what segment was measured, but on a large segment like the thigh the difference is 
highly noticeable. A recent study by Outram et al [8] conducted a similar investigation, but focussed on 
assessing the accuracy of Yeadon’s geometric model. The study compared the shank and trunk 
segment mass estimates of three healthy males obtained with the Yeadon model to a high accuracy 
laser scan. Again the results showed different errors depending upon the segment, with a range of 
+3.2% to -12.8% for the abdomen and upper arm segments respectively. 
 

To improve on the inherent inaccuracies in the methods discussed above, attention is turning to 
methods of obtaining accurate subject specific BSIP measurements using 3D scanning approaches [9]. 
By offering subject specific measurements, such methods are able to overcome the shortfalls in 
existing BSIP models discussed above and provide BSIP estimates to a greater degree of accuracy.  
 

Conventional 3D scanning systems such as laser scanners would appear to offer the best level of 
accuracy, their use is however inhibited by their expense and the time taken to produce a scan as 
errors may be introduced in the 3D model due to breathing and other involuntary movements of the 
human body [10].  
 

Full body scanners are rapidly emerging, offering rapid 3D scans of the full human body and utilising 
existing technology such as electromagnetic wave and laser scanning to name but two. Whilst 
overcoming the problems of movement, the use of such systems is again inhibited by their expense 
and required space [10]. 
 

As highlighted by Wicke and Dumas [9], structured light scanners would seem suitable for this purpose 
as they are able to produce very quick 3D profiles of an object. However, such systems also currently 
have a low adoption rate due to their expense and complexity.  
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The recent introduction of the Microsoft Kinect games controller and associated software developer 
tools provides the potential for 3D scanning at a low price point, achieved with the integral pseudo 
structured light technology designed to track the motion of a person for animation of an avatar within a 
virtual gaming environment. The low price point, coupled with the ability to offer full 3D scans at a rate 
of 30 scans a second means the Kinect is able to overcome the shortfalls apparent in existing 3D 
scanning systems highlighted above [11]. Much work has been conducted in the field of 3D scanning 
with the Kinect, including notable papers who focus on scanning full human bodies and indoor 
environments respectively [10] and [12].  
 

Given the original application of the Kinect sensor and its low price point the accuracy of the 3D data 
returned by the Kinect is not of paramount importance, posing potential problems for its use in this 
application. Work by Khoshelham [11] has however shown the Kinect to provide mean and standard 
deviation errors in 3D data of around 4mm and 10mm respectively at a distance of 0.5m from the 
object to be scanned when compared to a laser scan. Khoshelham [11] also reports the standard 
deviation to increase as much as 45mm when around 5m from the Kinect sensor. 
 

Therefore, providing the subject to be scanned is able to get close enough to the Kinect sensor to 
achieve the smaller error values reported by Khoshelham [11] then it would seem that coupled with 
relevant data processing, the Kinect would be ideally suited to providing low cost, quick and accurate 
3D scans of the human body, from which subject specific BSIPs can be estimated.  
 

The purpose of the investigation was therefore to determine the Kinects suitability as a 3D scanner to 
obtain subject specific BSIP estimates by comparing the Kinects volumetric BSIP estimates of a torso 
manikin to those obtained with a high accuracy laser scanner and Yeadon’s commonly accepted 
geometric model [6]. 
  

2. Method 
 

2.1. The Microsoft Kinect 
 

Custom software was written to access to the Microsoft Kinect device using the application 
programming interface (API) by OpenNI. The software allows access to the Kinects IR camera and 
depth feed to allow calibration and capture of 3D scanning data (Figure 1). 
 

 
Fig 1. Software application to access the Microsoft Kinect. 

 
2.2. Camera Calibration 
 

Immediately apparent is that the field of view of a single stationary Kinect is unable to observe a full 
360o view of the human body in one scanning operation. This issue has been apparent in existing 
studies with the Kinect, mainly focussing on producing 3D scans of large scale indoor environments. 
Efficient solutions have used one Kinect sensor which is moved around the area to be scanned [13] 
and [14]. As the Kinect moves only a small amount between successive frames it is possible to align 
the scans using algorithms such as iterative closest point (ICP) [12]. This process would require the 
subject to stand still for extended periods of time whilst the Kinect is moved around and as a primary 
objective of this project was to minimise the scanning duration to reduce the possible effects of 
breathing and involuntary movements, this approach would not seem viable. 
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An alternative approach is therefore proposed, based on multiple Kinect sensors arranged in a 
configuration so they are able to obtain a full 3600 view of the subject to be scanned. Initial 
investigations showed that four Kinect sensors positioned diagonally opposite from one another 
provided the optimum compromise between the number of Kinects and the field of view. To allow a 
subject standing upright to be scanned, this equated to a scanning area of approximately 2m2. 
 

Due to the arrangement of the Kinect sensors and hence their very different fields of view, their scans 
have dramatic differences. As these scans have a limited number of corresponding points it prohibits 
the use of conventional 3D stitching algorithms such as ICP. Extrinsic camera calibration is therefore 
required to determine the real world position of the Kinects in relation to one another in order that the 
3D scans obtained from each Kinect can be aligned with a single global co-ordinate system. 
 

The extrinsic calibration procedure proposed for use with this method is a novel approach, inspired by 
existing extrinsic camera calibration routines. [15] 
 

The case of initial calibration is a relatively simple problem as the Kinects and object to be scanned 
remain stationary at all times, with the only difference between each Kinect being their point of view. 
Therefore, the co-ordinate systems between neighbouring Kinects are simply linked by a single 
rotation and translation which can be used in conjunction with a 3D rigid body transformation to align 
the scans with a common coordinate system. 
 

Firstly, consider a rigid transformation between two points in non-homogenous coordinates. 
ᇱ࢖  = ࢖ࡾ +  ࢚
 Where p’ and p are 3D points, R is a 3x3 rotation matrix and t is a 3x1 translation vector 
 

Therefore, given three corresponding 3D points obtained from two point clouds it is easy to calculate 
the rigid body transformation between them by calculating the rotation and then translation. With this 
knowledge, the transformation between camera pairs can be obtained and subsequently applied to the 
neighbouring point cloud to align it with the common coordinate system. 

 

To calculate the rotation the mean position is first subtracted from each point cloud to make the 
rotation independent of the translation and to thereby simplify the problem. 
࢓  = ૚ࡺ ෍ ୀ૚࢐ࡺ࢐ࡼ ଚതതതࡼ   = ࢐ࡼ −    Where m is the mean position and N is the number of points in the point cloud Pj ࢓
The resulting points are now only linked by a rotation. The points from each point cloud are then 
concatenated together in a 3 x N matrix with each row containing a single 3D point. 
࡭  = ഥࡼ  Where A is the product of multiplication and  ࢀഥᇱሻࡼഥሺࡼ and ࡼഥᇱare the concatenated points 

 
 

The rotation can then be extracted from the matrix A by decomposing it with the use of singular value 
decomposition (SVD).  ࢀࢂࡰࢁ =  ࡭

 Where U, D and V are the products of the SVD operation, A is the product of multiplication from above 

 
 

The rotation can then be obtained as below. 
ࡾ  =  Where V and U are products of the SVD operation, R is the rotation matrix ࢀࢁࢂ
 

With the rotation known it is now easy to calculate the translation as below. 
࢚  = ᇱ࢓ −  Where t is the translation matrix, m and m’ are the point cloud mean positions and R is the rotation matrix ࢓ࡾ
 
To facilitate the scanning the Kinect sensors were laid out as shown in figure 2. 
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Fig 2. Layout of the Kinect sensors for the scanning system. 
 
Kinect number 1 was used as the reference Kinect and therefore the coordinate system with which to 
align all other individual Kinect coordinate systems. Calibration is therefore required between Kinect 4 
and 1, 2 and 1 and 3 and 2. Kinect number 3 also requires the transformation matrix from Kinect 2 to 
Kinect 1 to be applied to align its coordinate system with Kinect 1’s reference coordinate system. 
 

It is important to note that conventional intrinsic camera calibration is not required in this system as 
only the Kinects infra-red (IR) camera is used and investigations have shown this camera to be 
calibrated for intrinsic correction at manufacture. 
 
2.3. Finding Corresponding 3D Point Pairs 
The initial calibration procedure requires corresponding 3D points from each neighbouring Kinect, 
something which is not a trivial task. Many approaches have been considered, including finding the 
centre of spheres [16] and finding the corners of a planar board [17]. 
 

Conventional stereo camera calibration often makes use of a planar black and white checkerboard, 
from which the location of the checkerboard corners are found in each cameras frame. By knowing the 
2D location of these points the cameras relative pose to one another can be determined to allow the 
3D location of points within the camera pair’s field of view to be obtained. [15] 
 

The method adopted for finding 3D point pairs in the proposed system takes a similar form. A planar 
checkerboard is positioned in front of the Kinect pair and the open source Open CV checkerboard 
corner finding algorithm used to find the 2D projective coordinates of the checkerboard corners in the 
infra-red (IR) image from each Kinect (figure 3). 
 

    
 

Fig 3. Checkerboard corners found from the IR cameras of two Kinects. 
 

A 3D scan of the checkerboard is then taken by the Kinect which is later used to find the real world 3D 
coordinates of each checkerboard corner. As the Kinects 640x480 3D depth map directly relates to its 
640x480 IR camera image it is a relatively simple process to convert from 2D projective coordinates to 
real world 3D coordinates. 
 

A 10x7 planar checkerboard was used for calibration, giving 70 corner locations and hence 70 
corresponding 3D points from one image capture that can be used for calibration. 
 

Left Camera 1
Right Camera 1
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It is important to note the IR projector of the Kinect must be covered up when using the Open CV 
checkerboard corner finding algorithm as otherwise the speckle pattern generated by the Kinect 
obscures the checkerboard corners, preventing the algorithm from working correctly. The scene 
observed by the Kinect must therefore be illuminated with an external infra-red light source. However, 
when performing the 3D scan of the checkerboard the IR projector must be uncovered and the external 
light source turned off to improve performance.  
 
2.4. Calibration Optimisation 
Due to the nature of the Kinect the returned depth information can be very noisy which may result in 
incorrect depth (Z) components of 3D coordinates. This poses a potential problem when trying to find 
the 3D location of a checkerboard corner using a single 2D pixel as the depth calculated by the Kinect 
at that point may be incorrect. 
 

For this reason the proposed system adopts a depth windowing and averaging feature to improve upon 
the quality of the depth information. A search window decreasing in size from 15 pixels to 0 pixels in 1 
pixel increments is employed to determine the Z value over the region surrounding the checkerboard 
corner. This concept is shown in figure 4 for a 4 pixel search window, with the central cross defining the 
checkerboard corner as found using the OpenCV algorithm and the outer four crosses defining the 
outer corners of the search square. 
 

 
 

Fig 4. 4 Pixel Z component checkerboard corner search window. 
 
The returned depth values across the search window are averaged and then used as the Z value for 
the real world checkerboard corner location. 
 

This results in 16 sets of 140 point pairs (16 window sizes, 70 points per checkerboard and 2 Kinects) 
which may be used for the rigid body calibration procedure. With so many point pairs it is likely that 
some points will have errors associated with them which must be excluded from the calibration process. 
Furthermore, the optimum window size for each checkerboard position must be determined. To 
perform these computations the point pairs are input to a random sample consensus (RANSAC) style 
optimization routine to pick the best points to use for calibration, based upon the point pairs and 
window sizes which return the lowest root mean square (RMS) inter-camera calibration error. 
 

Such rigid body algorithms require a minimum of 3 points to work effectively, with an optimum number 
being around 8 point pairs and little noticeable difference further increasing the number of point pairs 
up to around 35 points [18]. With this in mind and to improve the speed of the calibration the proposed 
RANSAC algorithm has a condition stating that point pair searches should include a minimum number 
of 8 point pairs.  
 

Once the best point pairs have been picked the initial calibration routine is executed to obtain the 
transformation matrices for each Kinect pair. The transformation matrices obtained from this initial 
calibration procedure are later used to align the point cloud scans from each Kinect with the single 
global coordinate system. 
 
2.5 Landmark Identification and Segmentation 
3D scans obtained with the proposed system must be split up to allow BSIP’s to be calculated for each 
of the bodies segments. The segment end points adopted for use by the proposed system are those 
defined by Yeadon [6]. 
 

Work has been done in this area to develop automatic anatomical landmark finding algorithms [19]. 
However, the physical condition of some subjects may mean the anatomical landmarks are hard to find 
and therefore a fully automatic system may lead to errors in determining the position of the landmarks. 
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To ensure the system works for all possible physical conditions of subjects and to obtain the greatest 
level of accuracy possible, the approach adopted by the proposed system adopts a conventional 
approach, involving the anatomical landmarks being manually located by an assistant and marked with 
black self-adhesive markers. This process, commonly known as palpation, defines the segment end 
points and hence where the 3D scan will be split up. 
 

Figure 5 shows typical anatomical landmarks defined by Yeadon [6] that mark the trunk segment end 
points of stadium solids s2 and s3 as the umbilicus and nipples respectively. 
 

 
 

Fig 5. Trunk manikin palpated at anatomical landmarks using black self-adhesive markers. 
 
In a similar approach to the initial calibration procedure, the black circular markers can be clearly 
observed in the IR image. The Hough circle finding algorithm is used to locate the markers in the 
image and to find the 2D projective coordinates of their centre which can later be easily converted into 
3D coordinates. 
 

Although not apparent in figure 5, the upper end point of the trunk segment is defined with 4 markers 
and the lower end point defined with 3 markers. The placement of these markers is likely to have a 
degree of error due to asymmetry of the human body and human error in placement. Therefore the 
mean horizontal component of each segment end point is taken. These mean values are defined as 
horizontal planes in which to segment the point cloud scan, subsequently resulting in a point cloud of a 
given segment. Figure 6 shows a point cloud scan of the two stadium solids in figure 5. 
 

 
 

Fig 6. Trunk segment point cloud scan. 
 
2.6. Watertight Model Generation 
 

Immediately apparent from figure 6 are the discontinuities in the point cloud’s top and bottom edges. 
This is due to the non-uniform scanning grid used by the Kinect, meaning there are variable gaps 
between the horizontal segmentation plane and the nearest points in the point cloud. These gaps 
result in a significant loss of volumetric data which would lead to considerable inaccuracy in BSIP 
calculations. To avoid this problem the point cloud must be fully extrapolated to the segmentation 
plane.  
 

Firstly, the neighbouring points above and below the segmentation planes are found (figure 7). These 
two sets of points are then smoothed using a minimum least squares (MLS) smoothing algorithm to 
remove discontinuities in the depth information before being triangularly meshed using the open 
source Point Cloud Library’s (PCL) greedy triangulation meshing algorithm.  
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Fig 7. Segmentation process of the 3D point cloud scan. 
 

The triangular meshing process creates a complete surface that passes through the points where the 
segmentation plane intersects. The triangles forming the mesh are then examined to determine if any 
intersect the segmentation plane, and therefore have 1 or 2 vertices above or below the segmentation 
plane. The vertices of the triangles matching this condition are then used to construct 3D geometric 
lines with one point above the plane and one of the triangles other vertices acting as a reference point 
below the plane. The intersection point of the segmentation plane and this line are then found which 
returns a 3D point that lies exactly on the plane where the point cloud was segmented. This new point 
is combined with the existing point cloud data and the point above the segmentation plane that was 
used to construct the line removed. This process is repeated for all mesh triangles matching the 
condition for both segmentation planes. Figure 8 shows the point cloud previously shown in figure 6 
fully extrapolated to both segmentation planes. 
 

 
 

Fig 8. Trunk segment point cloud scan extrapolated to segmentation planes. 
 
The 3D point cloud scan is then imported into GeoMagic’s ‘GeoMagic Studio’ software to undergo a 
5mm uniform sub sampling procedure, smoothing to remove discontinuities in the depth information 
and final triangular meshing. This results in a complete surface, but with a hole in the top and bottom of 
the mesh about the segmentation plane, subsequently filled using GeoMagic Studio’s integral hole 
filling tools to result in a complete watertight mesh. 

 
2.7. BSIP Calculation 
 

To calculate BSIPs of the segment the complete mesh produced above is imported into PTC’s ‘Pro-E’ 
CAD software and the integral analysis tools used to obtain the required BSIPs. 
 

The complete process from 3D scan to BSIP estimation follows the workflow shown in figure 9. 

 

Fig 9. Workflow for scanning process. 
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Due to the variation in chest and stomach shape it is hard to produce a geometric shape which is able 
to represent the body’s trunk segment accurately, consequently, this segment exhibits the greatest 
level of error in BSIP estimation when using geometric based models. With this in mind the trunk 
segment was used to assess the accuracy of the system. 
 

The results obtained with the proposed system were compared to results obtained from a gold 
standard laser scan and Yeadon’s commonly used geometric model, with the same segment end 
points used across all methods. 
 

A ‘Choking Charlie’ torso manikin, manufactured by Medical Plastics was used as the subject to be 
scanned by the proposed system. Firstly, the trunk segment of the manikin was scanned using a 
Modelmaker D100 non-contact laser scanner to obtain a gold standard measure of volume. Post 
processing with the use of GeoMagic Studio allowed segmentation of the point cloud, sub sampling 
and triangular meshing to result in a watertight mesh (figure 10). Further post processing as detailed 
above enabled calculation of the manikins BSIPs. 
 

 
Fig 10. Laser scan of the manikin and the segmentation planes. 

 

Next, the manikin was measured using anatomical tape and callipers to obtain the measurements 
necessary for the Yeadon model [6]. The measurement process was repeated twice with the 
measurements averaged before using Yeadon’s formulae to calculate the segments BSIPs [6]. 
 

Finally, the initial calibration and scanning procedure as detailed above was adopted with six scans of 
the manikin being completed using the proposed system to assess accuracy and repeatability. To also 
assess the robustness of the calibration algorithm, each different scan used a new set of camera 
positions and hence new calibration. 
 

As the Kinects IR projectors can interfere with one another in multiple device environments the 
scanning process was done in two stages with the IR projectors of neighbouring Kinects being covered 
up and the Kinects diagonally opposite from one another taking a scan together as they are obscured 
from one another by the manikin. 
 

 
4. Results 
 

Table 2 shows the mean and standard deviation of the RMS error in calibration across the six different 
calibrations 
 

Table 2. Rigid body calibration RMS error values. 

 Kinect 2 to 
Kinect 1 (mm) 

Kinect 4 to 
Kinect 1 (mm) 

Kinect 3 to Kinect 2 + 
Kinect 2 to Kinect 1 (mm) 

Mean 2.76 4.03 6.91 
Standard Deviation 0.59 0.71 0.97 

 
Immediately apparent from table 2 is the large mean RMS error in the calibration for Kinect 3. This is 
purely caused by the need for two transformations to get back to the reference coordinate system of 
Kinect 1 and therefore the compounding of the error in the two transformations. 
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Table 3 and 4 shows the percentage errors apparent in the volume measurements of the manikin’s 
trunk segment when compared to the gold standard laser scan. 
 

Table 3. Percentage error in the volume measurements with Yeadon’s geometric model [6]. 

 
 
 

Table 4. Mean percentage error and standard deviation in the volume measurements with the proposed system. 

 Volume 
Mean Error (%) 0.04 
Standard Deviation 2.11 

 
 

5. Discussion and Conclusions 
 

The results in table 4 show a very small average difference in the volume measurements obtained with 
the Kinect scanning system, when compared to the gold standard laser scan. In the main the results  
obtained with the system also show smaller errors in volume estimation than is apparent with Yeadon’s 
commonly used geometric model. However, the standard deviation in the error means that on some 
occasions the accuracy is slightly less than that of the Yeadon model. 
 

The volume measurements obtained with the scanning system can be simply converted to mass 
measures by assuming uniform segment density in the same way as the investigations by Durkin and 
Dowling [7]. Directly comparing the results from these investigations suggests the system proposed 
here is able to offer better accuracy than other common BSIP estimation models, due to the subject 
specific nature of the measurements used to form BSIP estimations. Further work is however required 
in this area to compare the accuracy of the system when working with other BSIP measures and to 
determine if the uniform density assumption introduces unnecessary error. Something however shown 
by Wicke and Dumas [9] to have little effect. 
 

As previously discussed, it is notoriously difficult to obtain accurate BSIPs of the trunk segment with 
the use of geometric models, such as that developed by Yeadon [6]. The trunk manikin used here is in 
fact relatively geometric in nature so fits the stadium solids of the geometric model very well. This has 
resulted in the geometric model providing a better than expected error, with normal errors in the region 
of ±6% to ±12% [9]. With this in mind it would be expected for the Kinect scanning system to 
consistently far outperform the geometric model when used with living subjects whose trunk segments 
differ greatly from the stadium solid shape due to excess fat and skin. 
 

The standard deviation in volumetric data from the scans is also better than those apparent with 
existing BSIP models, as reported by Wicke and Dumas [9], thereby suggesting great potential for 
reliable usage of the system in the long term. 
 

As well as offering accuracy advantages over existing BSIP estimation methods, the proposed system 
also offers a considerable advantage in terms of speed as a single scan of the whole body takes 
around 3 seconds, plus the time taken to initially palpate the body In contrast, the manual 
measurements required of Yeadon’s geometric model can take around 40 minutes of the subject’s 
time. 
 

The greatest drawback of the system is the need to manually palpate the human body. The scanning 
system could be considerably improved if an accurate method could be devised to automatically 
determine the location of key anatomical landmarks from the 3D scans and to then use these to 
segment the body. Current methods however do not appear to have the required level of accuracy. 
 

Part of the data processing procedure in this study involved the use of commercial software costing 
tens of thousands of pounds. The approach was adopted for this initial exploratory study to ensure the 
highest possible level of accuracy when processing the point cloud data to allow the accuracy of the 
scanning system to be truly examined without any possible interference from issues external to the 
scanning procedure. However, this rather defeats one of the initial objectives of the project to create 
low cost scanning solution. Further work therefore includes the production of fully standalone software 
that is able to mesh the point cloud scan and subsequently calculate the required BSIPs to a level of 
accuracy comparable with the commercial software used in this study.  
 
 

 Volume 
Error (%) -1.17 
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The use of a static manikin in this investigation means that when required, it was possible to manually 
cover up the IR projectors to prevent interference. When scanning living subjects this process would 
be unsuitable due to the possibility of movement over the time taken to manually cover and uncover 
the IR projectors and hence the possible introduction of error. Further work therefore involves the 
development of an electronic system controlled from the scanning software to automatically cover and 
uncover the IR projectors with shutters when required. 
 

Although clearly effective, the standard deviation in volume suggests the calibration approach adopted 
here is likely the main cause of error in volumetric estimations. The point cloud scan portrays visible 
misalignment between the four scans, particularly apparent with the scan from Kinect number 3 which 
must undergo two transformations. Further work is therefore required to improve the calibration 
method to reduce the inter-Kinect calibration RMS error and hence improve the overall accuracy of the 
system. 
 

The study conducted here is only limited initial investigative work, purely focused on examining the 
volume and hence mass of the trunk segment of a static manikin. Further work includes scaling up the 
study to include the scanning of living subjects and to calculate the BSIPs of all the bodies segments.  
 

The system proposed here will never be able to replicate the accuracy of a laser scanner when 
scanning static objects such as the torso manikin used here, but the short scanning duration is able to 
reduce the possibility of error arising due to involuntary movement of the body. The system presented 
here is a small financial investment and offers considerable advantages over current BSIP estimation 
techniques. It is hoped the principal demonstrated here can be further developed to produce a full 
system that is able to produce fast and accurate estimates of the body’s segmental inertia parameters. 
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