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Abstract 

Depth cameras have revolutionized anthropometry providing efficient ways to gather 3-dimensional 
information of a human body in varied settings. However, the accuracy and resolution of the current 
depth camera systems limits their applicability for many applications. Commercial markerless 
motion-capture systems based on depth camera technology are similarly limited, particularly by the lack 
of a model-based tracking mechanism and a high dependence on unobstructed camera views. This 
paper presents a series of model-based methods for estimating body configuration and postures based 
on depth and posture data obtained from a single Kinect v2 sensor. The software system records and 
processes multiple depth images of a person from different point of views to capture the whole-body 
shape. A statistical body shape model that can represent a wide variety of human body shapes and 
poses was generated by analyzing template-fit whole-body laser scans and measured anatomical 
landmark data using a principal component analysis (PCA). PCA reduces the high dimensionality of the 
original data source by projecting the dataset to a low dimensional principal component (PC) space. In 
the PC space, only realistic body shapes and landmark data can be generated, and this space allows 
for efficient body shape search due to the low dimensionality. Using this model, a rapid fitting method for 
generating a subject-specific manikin from Kinect depth data was developed that can estimate a 
minimally-clad body shape under normally clothing. Posture data from subsequent movements 
estimated by the built-in skeleton tracker in the Kinect system were further improved by fitting each body 
segment of the manikin to a corresponding partial depth dataset while the segment lengths were 
preserved as defined in the manikin. This study demonstrated how a model-based approach can 
improve the accuracy and feasibility of a depth camera system so that the system can be readily applied 
for various applications, including in-vehicle occupant dynamic analysis, occupant classification, and 
markerless motion analysis. 
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1. Introduction 

Recently, depth cameras that return 3D depth information of surroundings have been extensively used 
in a wide range of applications due to its low cost, low profile, and portability. The advance of the 
related technologies has been improved the accuracy and reliability of these cameras. The Microsoft 
Kinect system, for example, switched its depth sensing technique from a structured light method to a 
time-of-flight, which is less sensitive to interference with other sensors, for the latest version (V2) to 
provide color and depth information with a higher resolution and a wider field of view [1]. Most 
importantly, many validation studies reported that, while the accuracy decreases exponentially with 
increasing distance for Kinect v1, Kinect v2 has a constant accuracy about 10 mm over distance [2].  
Due to the improved depth sensing capability, Kinect software development kit (SDK) provides more 
reliable face tracking and skeleton (i.e. posture) estimation up to 6 people, simultaneously. This 
benefits many applications where portable markerless human posture tracking systems are required. 
Since the Kinect system requires only a single sensor and a compatible computer to track the postures, 
motion data can be gathered in a wide range of environments, such as workplaces [3], schools [4], 
even moving vehicles [5]. However, the accuracy of the original depth data what the current depth 
camera systems provide limits their applicability for engineering applications.  
In recent studies, model-based approaches have been a solution for these limits of the depth data 
quality, especially in body shape and posture modeling area. For example, Weiss et al. [6] presented a 
model-based body shape and posture estimation method from multiple depth images based on 
SCAPE model [7]. Pishchulin et al. [8] proposed S-SCAPE that is a simplified and efficient variant of 
the SCAPE model to model a subject-specific body shape from depth images. Baak et al. [9] and Ye et 
al. [10] utilized a pose database that has motion capture data to improve posture estimation based on 
depth images. 
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In this paper, we present a series of model-based methods for rapidly estimating accurate body shape 
and posture of a person using a single Kinect v2 sensor. While the Kinect SDK provides a posture 
estimating functionality via a built-in skeleton tracker, the accuracy was further improved by utilizing a 
subject-specific manikin that generated from a body shape model. We applied the Kinect-estimated 
posture data as an initial guess to the articulated manikin per frame, and each segment of the manikin 
was fitted to corresponding depth data to capture the details in actual postures. Clothing effects were 
learned from the manikin generation step using the inscribed-fitting method [11] and applied in the 
posture fitting step.  

2. Method 

2.1. Statistical Body Shape Model 

A new human figure framework, BioHuman, developed at UMTRI (http://umtri.umich.edu) was used in 
this study. This framework incorporates an efficient, quad-based, symmetrical surface mesh along with 
anatomically defined surface landmarks and internal joint centers. BioHuman body shape model 
currently includes 14k vertices, 96 landmarks including joint centers, and 16 standard anthropometric 
dimensions. Figure 1 shows the mesh structure of BioHuman and the surface landmarks on the mean 
shape.  
A total of 155 male and female subjects were recruited, with stature range 145 to 196 cm, BMI 16 to 42 
kg/m2, and age range of 20 to 95 years old. Whole body laser scan data of a standard standing pose 
were homologized by fitting BioHuman model to each scan as a template using a two-level fitting 
method developed in our previous study [12]. The fitted scans were analyzed using principal 
component analysis (PCA) along with the 6 standard anthropometric measures, and 155 body 
landmarks and joint locations. 60 principal component (PC) scores were retained from the PCA to 
describe the 99%ile of the data variations. A multivariate regression model was built to associate the 
PC scores to a set of predictors such as stature, sitting height to stature ratio, BMI, gender and age, so 
that a subject-specific manikin can be generated from these few predictors. The resulting statistical 
body shape model is publicly available at http://humanshape.org.  

 
Figure 1. Mean shape of the BioHuman standing male model and surface landmark locations. 

 

2.2. Subject-specific Manikin Generation 

The body shape space of the BioHuman model is a low dimensional space defined by a small number 
of PC scores, which allows an efficient body shape search in that space. Also, any combinations of the 
PC scores found within this body shape space generates only a realistic body shape. Based on these 
characteristics, a rapid subject-specific body shape fitting method was developed [13]. This method 
generates a water-tight subject-specific body shape manikin even from a given incomplete information 
of a target subject. For example, if a scan of a partial body shape is given, a whole body shape can be 
estimated by finding a set of PC scores of the body shape model that meet the given input data using 
this fitting method.  
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In the current study, a set of depth images obtained from a single Kinect V2 sensor were used for 
generating a subject-specific manikin using the fitting method. The software system takes shots of the 
front, side, and back side of a person in about 10 seconds. The depth data are then post-processed to 
improve the data accuracy and quality. Multiple images per shot are averaged to reduce the noise level, 
and background points were removed from the images based on the skeleton data estimated by the 
SDK. The system automatically aligns and merges the images based on detected geometrical 
correspondences between the processed images. Figure 2 shows the hardware setup and the graphic 
user interface of the developed scanning system.  
The inscribed fitting method developed in a previous study [11] was employed to estimate the 
minimally clad body shape from clothed scan data. This fitting method was motivated by the fact that 
the body shape should lie inside the surface of a clothed body, and at the same time, some parts like 
face, ankles, and hands of the scan should be close to the actual body shape. This yielded an 
assumption that an actual body shape is the maximum body volume within the scan surface that is 
available in the body shape space of the model. Conceptually, this is like finding an inscribed sphere in 
a polygon. Figure 3 shows an example of clothed scan data captured from a single Kinect sensor, and 
an inscribed-fitted BioHuman manikin of the scan. In this case, 10 iterations were performed for fitting 
the model and the known stature of the subject was fixed during the fitting.  
 

 

Figure 2. A portable whole body scanning system: Hardware setup (left) and software (right). 

 

 

Figure 3. An example of input Kinect clothed scan (left) and an inscribed-fitted BioHuman manikin (right) 
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2.3. Model-based Posture Estimation 

For the current study, BioHuman was articulated based on estimated joint locations to represent 
various postures of a specific person. For the articulation, the model was segmented into 17 body parts. 
An arbitrary posture can be applied to a BioHuman manikin. To improve computational efficiency, 
blending functions are not applied at joints in this study. 
The accuracy of the original joint locations estimated from the SDK is improved by fitting a 
subject-specific manikin to depth data frame by frame. This fitting step is performed in post-processing, 
so the Kinect depth data and segment coordinate systems are stored prior to these calculations. The 
overall approach to fit a model to depth data consists of three steps: (1) segment the depth per the 
body segments of the manikin, (2) transform each manikin segment to the corresponding segment 
using an articulated iterative closest point (ICP) algorithm, and (3) update the segment coordinate 
systems based on the estimated transformations. As described above, Kinect joint orientation data 
were applied to the manikin for each frame as an initial guess. 
When each segment is fitted to the depth data using ICP, the joint connectivity between the sharing 
segments is considered as a boundary condition. The joint connectivity is considered in the ICP 
process by including the joint location in the points to be aligned and applying a weight (between 10 
and 100) to ensure that the joint constraint is met. Figure 3 shows sample fitting results with the joint 
constraints. Figure 4 shows an example of a posture fit with and without joint connectivity 
consideration. 

 

 

Figure 4. Model fitting without joint constraints (top) and with joint constraints (bottom, weight per joint = 10) 

 

3. Results 

The fitted body shape manikins estimated from clothed depth data were compared to the 
minimally-clad laser scans of the same subjects. The comparison showed that the absolute mean error 
was 11.1 mm, 95th %tile error was 17.1 mm, and the root-mean-square-error (RMSE) was 11.7 mm. In 
Figure 5, the mean errors at each vertex across all the scans were color-coded on a mean body shape. 
The fitting time was under two seconds per scan on average on a typical laptop computer (I7 3.4GHz 
CPU with 16 GB RAM).  
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Figure 5: Mean error distribution was color-coded on a mean body shape. 

 
Figure 6 shows comparisons of the series of depth data and the posture estimating results using the 
fitted subject-specific manikin. Within two to four iterations, all the segments were well fitted to the 
depth data without resulting in unrealistic postures. The computation time of a single fitting iteration, 
including the depth segmentation time, varied around 100 milliseconds (10 Hz) when 1/10 of depth 
points were used. Torso flexions and extensions were well estimated from the fitting, improving on the 
original Kinect skeleton data, which do not represent any degrees of freedom within the torso. Note 
that these motions were taken without any obstacles between the subject and the sensor, and wrist 
and ankles were not fit to depth data due to poor Kinect data quality for these joints. The results 
showed that the system can reliably track motions even a subject is moving fast (Figure 6 (c)) or some 
parts of the body are self-occluded by the other parts (Figure 6. (b)).  

4. Discussion 

This study investigated the utility of Kinect V2 for subject-specific manikin generation and markerless 
posture estimation. A preliminary evaluation demonstrated that although the version-2 sensor is 
considerably improved relative to the first version, the posture tracking accuracy of software supplied 
with the sensor is not adequate for research purposes. To address these limitations, a custom software 
system was developed that leveraged previously developed statistical models and methods.  
The system applied various novel developments. A new articulated body shape model, BioHuman, 
was utilized. The model incorporates 17 articulated body segments based on estimated joint locations 
in order to represent various postures. The inscribed fitting method finds a body shape from a normally 
clothed scan data, so that the system can be applied to broader situations. The original Kinect skeleton 
data representing postures of a person were successfully applied to subject-specific BioHuman 
manikins. For improving the accuracy of this initial guess, we developed a model-based posture 
tracking method based on Kinect depth data. The results demonstrated that this approach has good 
potential to track postures in daily living situations. 
This study has substantial limitations that will be addressed in subsequent work. Many of the 
limitations are due to the Kinect sensor itself. As described in this report, the built-in skeleton tracking 
is of limited utility for posture tracking, due to large errors and generally poor performance, including 
substantial dropouts. Since the model-based approach developed in this study uses the original Kinect 
skeleton data as initial guess, fitting results might be degraded if the original data has poor quality. For 
example, if a lower leg is hidden to the sensor for a while, the skeleton tracker cannot estimate joints 
locations related to the leg, and the new system also cannot estimate the good quality of leg 
trajectories. This could be resolved by using a statistical posture model that predicts series of joint 
locations from incomplete skeleton data.  
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(a) Raising arms and a leg 

 

(b) Sitting and standing 

 

(c) Jumping 

Figure 6. Tracking results of short motions by fitting a BioHuman manikin (white) to Kinect depth data (blue) 
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Although the results of this study are promising, more work will be needed to develop a robust system 
that can be applied to vehicle occupant positioning research or other applications. Quantitative 
validation of the developed system is needed. From simple motions to complex motions interacting 
with surrounding objects, various motion data are needed to collect for in-depth validation of the 
system. Also, in-depth clothing effect analysis is needed not only for estimating the body shape, but for 
the posture tracking. Although the new system can estimate a plausible body shape and a kinematic 
linkage from a clothed scan, the resulting posture data may not be accurate as posture data obtained 
from a minimally clad person. More work is needed to determine the likely bounds of clothing effects 
and how they can be mitigated. 
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