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Abstract 

Human pose estimation task takes images as input and extracts a set of locations representing the 
predefined body joints and the sparse connections between the joints, called the body parts. A pose 
can be estimated from single or multiple frames, in a single (monocular) or multi-view (stereo) setup 
and for a single person or multiple people in the scene. In this work, we provide an overview of the 
classic and deep learning-based 3D pose estimation approaches. We also point out relevant evaluation 
metrics, pose parametrizations, body models, and 3D human pose datasets. Finally, we review state-
of-the-art pose estimation results, briefly discuss open problems, and propose possible future research 
directions. 
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1. Introduction 

Human pose estimation is one of the fundamental computer vision tasks, whose applications span from 
action detection [37] and recognition [36] to human tracking [27], augmented reality [5], video 
surveillance [63], sports [8] and other. A human pose can be described as an articulated body [68]. An 
articulated body is an object composed of more than one rigid part connected by joints, allowing 
rotational and translational motion under three degrees of freedom [65]. The pose estimation can be 
defined as the search for a specific pose P in a space of all articulated poses Π. Another definition of 
the pose estimation is the problem of extracting a set of image features that correspond to human body 
joints (also known as keypoints). The set of joints J is a set of pixel coordinates J2d ∈ R2n, in case of 2D 
pose estimation, and a set of 3D location coordinates J3d ∈ R3n, expressed in millimeters, in case of 3D 
pose estimation (Fig. 1). The joints are sparsely connected via rigid body parts. In case of multi-person 
pose estimation, the goal is to extract multiple joint sets, Ji ∈ M, i.e., multiple poses, P ∈ Π. Note that 
the expected number of joints x ∈ J in the pose model may vary between the datasets (Tab. 2) and 
between the algorithms (Tab. 1). 
 

The pose estimation is generally difficult due to unknown location of a human body in an image, 
unknown number of people in the scene, (self-) occlusions, a variety of environments [71, 43, 28] and 
actions [37, 36] and diverse body shapes [7, 41] and clothes [58]. Reconstruction of a 3D human pose 
from a single 2D image is particularly challenging due to 2D-to-3D elevation ambiguities [69, 29, 42, 44, 
67, 66, 54,49]. To compensate for the lack of information in a single-view, multi-view [2, 30, 12, 59, 47] 
and multi-frame (video stream) [74, 76, 33, 26, 56] approaches to 3D human pose estimation have also 
been proposed. In most of the cases, 3D pose estimation approaches are top-down, meaning that they 
first locate a bounding box of the person and then apply the pose reconstruction procedure [30, 67, 48, 
77], or simply assume a single-person prediction in the given image. On the other hand, bottom-up 
approaches do not know the number of people upfront; they first detect individual body parts and then 
compose them into complete human poses [9]. 
 

Recent deep learning-based approaches are often classified into regression- and detection-based [54, 
66, 67]. The detection-based methods generate a likelihood heat map foreach joint and locate the joint 
as the point with the maxi-mum likelihood in the map [54]. The regression-based methods produce a 
continuous output directly, without using the likelihoods [42, 66]. Both detection- and regression-based 
approaches use multi-stage refinements [67, 44, 54, 59] to improve the performance. Body priors (for 
example, constant body part lengths through the frames or human body symmetries [35]) are also 
proven to be beneficial for the optimization [66, 69, 29]. Some deep learning models are able to learn 
the priors without the explicit clues [30, 79].  
 

In general, the existing 3D human pose estimation approaches can therefore be classified based on 
several distinctive properties, summarized in Tab. 1: the number of people in the scene, the number of 
cameras, whether they exploit the temporal context, whether the method is regression- or detection-
based approach, is it a top-down or bottom-up approach. The Tab. 1 is discussed in detail in the Sec. 
5. 
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Fig 1. An example of 2D and 3D human pose estimation on the MPI-INF-3DHP dataset [43]. 

The 2D pose locations are expressed in pixels and 3D pose in millimeters. 
The estimations are made using the 3DPoseNet model [43]. 

 

A recent review paper by Chen et al. [15] covers 2D and 3D deep learning-based human pose 
estimation approaches. In contrast, Perez-Sala et al. [57] published a paper in 2014.that covers 
classical approaches. In 2016., a review focused on monocular pose estimation was published by Gong 
et al. [22]. A work most similar to ours was published by Sarafianos et al. [62], covering 3D human pose 
estimation approaches. They provide a comprehensive review over state-of-the-art, propose a 
taxonomy of the approaches and discuss the open problems at that point in time. In this work, we use 
a similar approach to 3D human pose estimation overview as [62], but considering the most recent line 
of work, that are mostly based on deep learning. We also reflect on the pioneering works in 2D-to-3D 
pose elevation [74, 35, 68].  
 

Tab 1. An overview of the common properties of the recent state-of-the-art 3D pose estimation approaches. 
Note that TEMP stands for temporary, ABS for absolute pose, REG for regression, 

DET for detection, TD for top-down and BU for bottom-up. 
 

 #PEOPLE #CAMERA TEMP? ABS? REG/
DET 

TD/BU YEAR 

[30] single multi no no det. TD 2019. 

[67] single mono no no both TD 2018. 
[8] multi multi yes no reg. TD 2019. 

[13] single mono yes no reg. TD 2020. 
[73] single mono no no reg. TD 2019. 
[51] single mono no no det. TD 2018. 
[44] multi mono no no det. BU 2018. 
[32] single multi no no det. TD 2019. 
[26] single mono yes no reg. TD 2018. 
[59] single multi no no det. BU 2019. 

[47] single multi yes no reg. TD 2019. 
[60] single mono no no reg. TD 2017. 

[49] single mono no no reg. TD 2017. 

[78] single mono no no reg. TD 2019. 
[46] multi mono yes no det. TD 2019. 

[21] multi mono no no det. BU 2020. 
[38] single mono no no reg. TD 2019. 
[10] single mono no no det. TD 2019. 
[48] multi mono no yes both TD 2019. 
[40] single mono yes no reg. TD 2019. 
[25] single multi no no det. TD 2020. 
[14] single multi no no det. TD 2019. 
[16] single mono yes no det. TD 2019. 
[20] single mono no no - TD 2019. 

[17] single mono yes no det. TD 2020. 
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In the remainder of the paper, we review human pose estimation datasets and then provide a 
comprehensive review of 3D pose estimation approaches based on the taxonomy in the Tab. 2. In the 
evaluation section (Sec. 4), we list and explain the metrics used for the quantitative evaluation. Due to 
the amount of work, diversity and the success of deep learning-based methods, we separately 
summarize their properties in the Tab. 3, 4, 5. In the Sec. 4, we analyze the results of the state-of-the-
art methods, based on the most commonly used evaluation metrics, namely mean per-joint position 
error (MPJPE). In the discussion, we gather the insights obtained from reviewing the literature and point 
out the current open problems of 3D pose estimation. Finally, we conclude by identifying possible future 
research directions. 

2. Datasets 

Large high-quality 3D human pose estimation datasets are crucial for the success of deep learning 
models. The precise 3D annotations of human body joints serve as a direct supervision for models to 
learn how to detect the joints and resolve 2D-to-3D elevation ambiguities [30, 59, 17, 42, 25, 16]. 
However, acquiring 3D data in the real world is challenging and is done in specially designed studios 
[31] and indoor environments, using wearable IMU sensors [70]. Therefore, labeled 3D pose estimation 
datasets often lack a diversity of environments and backgrounds, especially in-the-wild examples 
(outdoors and sports activities, unusual and spontaneous human poses, etc.). One way to cope with 
the problem of environment and background diversity is to generate the data synthetically [71, 28]. In 
the remainder of the section, we briefly review the existing 3D human pose datasets - an overview is 
given in Tab. 2. 
 

Table 2. An overview of 3D human pose estimation datasets. The last column is discussed in the Sec. 5. 

 #Camera #People #Joints  #Frames  

    Train Val. Test 
Camp. & Shelf [4] 3-5 2-3 14 - - 3k 

Dense [23] 1 Many - All (50k) 
Panoptic [31] 521 2-10 15 All (65 videos) 

Unite [34] 1 1 - - - 8k 

3DPeople [58] 1 1 16 All (2M) 
HumanEva [64] 7 1 15 6.8k 6.8k 24k 
Human3.6M [28] 4 1 17 1.5M 0.6M 1.5M 

3DHP [43] 14 1-8 15 All (1.3M) 

Surreal [71] 1 1 - All (6M) 
Faust [7] 1 1 - 100 100 200 

Total Capture [70] 8 1 19 All (2M) 
PosePrior [1] 1 1 18 - - - 

 

One of the first publicly available (multi-person) 3D pose estimation datasets were Campus and Shelf 
[4], consisting of a series of frames sampled from two few-minute videos. The Campus and Shelf 
datasets are too small to be used for training deep learning models but are used for an evaluation of 
multi-person pose estimation methods [4, 12, 19]. In terms of modern pose estimation datasets, 
Campus and Shelf are relatively small, lacking variety of people, poses, activities and in-the-wild 
examples. Instead of Campus and Shelf, CMU Panoptic [31] and MuCo-3DHP [43] datasets are used 
for the evaluation of multi-person pose estimation methods. 
 

CMU Panoptic dataset is a multi-person 3D human pose dataset, capturing the 3D motion of people 
engaged in different social interactions (dancing, playing instruments, social games, etc.). The dataset 
is recorded in a specially designed, Panoptic Studio, with over 500 VGA and HD cameras and10 Kinect 
v2 RGB+D sensors, distributed over the surface of geodesic sphere with a 5.49m diameter. MuCo-
3DHPdataset is an extension of MPI-INF-3DHP dataset [43] for multiple people. MuCo-3DHP is 
interesting as it copes with aforementioned diversity of the environments (indoors and outdoors), 
backgrounds (extended with synthetically generated ones) and in-the-wild examples. 
 

Regarding single-person datasets, an MPI PosePrior [1] captures a variety of stretching poses from an 
actor using wearable sensors. The data is used to learn pose-dependent joint angle limits. Total Capture 
dataset [70] uses 8 HD cameras, 4 male and 1 female actors, each performing four diverse 
performances. There is a total of almost 2M captured frames of synchronized video. For capturing the 
data, they used IMU sensors. Human3.6M [28] is a large-scale single-person dataset, acquired by 
recording the performance of 5 female and 6 male subjects, under 4 different viewpoints (indoors).To 
extend to outdoor scenes and enrich the dataset, they also provide controlled mixed reality evaluation 
scenarios where3D human models are animated using motion capture and inserted in complex real 
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environments, viewed with moving cameras, under occlusion. A similar, but an order of magnitude 
smaller dataset is HumanEva [64]. They used 7 cameras (4 grayscale and 3 color) and did not extend 
above the indoor configuration. 
 

There are two popular synthetic datasets, SURREAL [71] and 3DPeople [58]. SURREAL is the first 
large-scale person dataset, it contains 2D and 3D pose skeletons, depth and body part segmentation 
maps, optical flow and surface normal ground truth for video input. In total, it contains 6 million frames. 
3DPeople dataset is very similar to SURREAL; it contains around 2 million images of 40 male and 40 
female actors performing 70 actions. Every subject-action sequence is captured from 4 camera views. 
 

Finally, there are a few datasets [7, 23, 34] that do not provide 3D pose annotations directly; instead, 
the annotations can be extracted from the volumetric or surface representations. 
 

3. Methods 

One of the early works, by Webb [74], analyzes the problem of interpreting images of moving jointed 
objects (i.e. the articulated bodies like the human pose [68]), in particular, the problem of estimating the 
body parts’ lengths. Similar to the modern definition of a body pose model [28], Webb defines the jointed 
object model as a set of: joints, rigid parts (body parts) and feature points (keypoints), where the 
keypoints coincide with the feature points. The proposed algorithm is based on a simple observation 
that the rigid part length is correctly observed when the angle between the rigid part and the camera’s 
z-axis is right. The observation is based on the assumption that the rigid part is observed under the 
right angle during the movement and that the object’s distance from the observer is known.  
 

Lee and Chen in 1985. [35] already knew that the 3D pose estimation from 2D feature points reduces 
to determining the rigid parts’ lengths and directions (whether they point towards or against the camera). 
To resolve some of the binary direction ambiguities for the rigid parts, they introduced the angle 
constraints on the flexion of shoulders, hips, elbows, knees, pelvis and neck. A work by Taylor from 
2000. [68] uses a weak perspective projection (an ortographic projection with an unknown scale) to find 
a family of 3D pose solutions, given a single uncalibrated image. Taylor assumes that the 
correspondence between the joints in the model and point features in the image, as well as the the 
relative lengths of the segments in the models, are known. Additionally, given the rigid part lengths, the 
scale of the weak perspective can be determined. To recover the pose unambiguously, the user 
specifies which end of the body part is closer to the observer. A work by Wei and Chai from 2010. [76] 
propose 3D pose recovery from 2D pose estimations in a two-step optimization procedure - the first to 
estimate a skeletal size and the camera parameters and then use the estimations to reconstruct the 
poses in a so-called joint-angle space.  
 

A 3D pictorial structures model, first published in 2013. [2], and then revisited in 2016. [4], cope with the 
multi-person pose estimation problem from multiple views. Due to a large number of possible poses in 
a multi-view setup, they first generate a reduced state space by triangulation of the corresponding pairs 
of body parts, obtained by the part detectors in each camera view. The key idea of the 3D pictorial 
structures model is the use of multi-view unary potential functions, that take into account the 2D 
detection confidences, multi-view part visibility, temporal consistency and the pixel reprojection error 
between the views. Finally, they balance the potentials’ influence by learning the model parameters 
using a variation of an SVM algorithm. A dual-source approach [29] from 2016. trains a complex 
machine learning model given two inputs - a generated 3D pose space and an annotated 2D image. 
The image is used to learn a pictorial structures model for 2D pose estimations. The 3D pose is selected 
from the pose space based on minimizing the reprojection error between the 2D and the 3D pose.  
 

In the recent years, almost all of 3D pose estimation methods are based on deep learning. Still, there 
are a few successful classical attempts. A movement of a human body can be described using a 
kinematic chain model. A kinematic chain space (KCS) algorithm [72] first translates a human body into 
a kinematic chain space and then optimizes a nuclear norm. The algorithm is not applicable only to 
human skeletons, but also to other kinematic chains like animals or industrial robots. An improvement 
over the pictorial structures’ idea [4] is to first cluster the detected bodies throughout the frames and 
then apply the 3D pictorial structures model [19]. Even though the clustering step reduces the overall 
algorithm’s complexity, it does not scale well for the larger number of views. Instead of processing the 
inputs from multiple views simultaneously, a cross-view tracking algorithm [12] uses an iterative strategy. 
The algorithm takes noisy 2D pose estimations as inputs and associate them among all pairs of views 
by exploiting temporal consistency. A convincing real-time performance was presented with 12 to 28 
camera views. Structure-from-articulated-motion [33] is an optimization algorithm that ap-plies an 
additional articulated structure term as a soft constraint on top of the classic non-rigid structure-from-
motion problem [18]. 
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3.1. Deep learning 

An approach by Chen and Ramanan [11] is similar to a dual-source approach [29] in a way that they 
also generate a library of 3D poses before learning. The 3D poses are projected to virtual camera views 
to obtain correspondent (2D, 3D) pose pairs. The prediction is made by selecting the most similar 
3Dpose to an estimated 2D pose. The 2D pose estimation is based on the predicted heatmaps using a 
deep learning model called convolutional pose machine (CPM) [75], that was proven to be successful 
for 2D pose estimation [9]. An early deep learning-based approach, called a kinematic pose regression 
[80], is the first model to exploit the structural constraints of a human body in a fully-differentiable 
manner. The model’s architecture is simple, consisting of the convolutional layers that end with a fully 
connected layer producing the motion parameters. The motion parameters are mapped to the joints in 
a so-called kinematic layer and the ground truth 3D joints are used as a supervision. Sparseness-meets-
deepness [79] is the first method that uses a variation of standard sparse pose representation (Fig. 1) 
to learn a deep model. They use the idea from [1] to learn a pose prior and also employ the temporal 
smoothness. To integrate pose prior and smoothness learning into the model in a differentiable manner, 
they use 2D pose estimations as latent variables in a form of heatmaps. A work by Park et al. [53] 
concatenates 2D pose estimations with the extracted image features. Instead of using relative position 
between of the 3D joints and the root joint (pelvis) as a ground truth, they have shown that using the 
relative positions with respect to multiple joints improves their learning. Li and Lee [38] learn a mixture 
density network [6] to generate multiple possible 3D poses’ hypotheses from a single monocular image. 
Another approach that generates the hypotheses is a deep pose consensus approach [10]. In contrast 
to [38], it generates partial hypotheses, for each group of the joints. The estimated joints are aggregated 
into poses in the final part of the model. 

A simple yet effective deep learning-based approach to 3D pose reconstruction from 2D observations 
[42] is the first remarkably successful regression-based model. The model was able to learn 2D-to-3D 
pose correspondences and ambiguities by using only 2D pose annotations as input and 3D pose 
annotations as an expected output, with no image data. The work sparkled the interest in the regression-
based methods for 3D pose estimations and is still used as an example for the evaluation protocols 
(see Sec. IV). Similar to the simple yet effective approach [42], a distance matrix regression [49] also 
learns 2D-to-3D pose correspondence. Instead of directly using 2N- and 3N- dimensional pose 
representations, they first represent the poses using N×N matrices of Euclidean distances between 
every pair of joints, and then formulate a problem as 2D-to-3D distance matrix regression. An 
adversarial approach to 3D-from-2D correspondences [20] learns a discriminator to distinguish between 
the real and the generated 3D poses. The generator first randomly generates relative depths between 
the joints but, with time, learns the feasible depth offsets and therefore - the pose prior. Another 
adversial approach is RepNet [73]. In contrast to the methods described above [42, 49, 20], it completely 
ignores 2D-to-3D joint correspondences. The discriminator learns a distribution of 3D poses and the 
the generator learns a distribution of detected 2D poses (obtained using the Stacked-Hourglass 2Dpose 
detector [50]) to a distribution of 3D poses, supervised by the discriminator. 

A maximum-margin approach [39] learns two separate sub-networks to embed the estimated pose and 
the 3D pose into a common space. The score of the prediction is the dot-product between the two 
embeddings. LCR-Net [61] predicts a multi-person 3D poses from a single image in three steps: by first 
generating multiple 2D pose proposals, then scoring the proposals using the classifier and finally 
refining the poses both in 2D and 3D using the trained regressor. The pose proposals are obtained by 
first finding the bounding boxes and then generating multiple sets of joint locations for every bounding 
box. A compositional human pose regression [66] uses bones instead of joints as pose representation 
and show that the bones more stable and easier to learn than joints. The key to the method’s success 
is the separation of the 2D part (pixel locations) of the joint predictions from the depth part. They also 
exploit the joint connection structure to define a loss function that encodes long-range interactions 
between the bones. A semi-supervised approach [47] exploits temporal relations between the multi-
camera views to handle un annotated and uncalibrated videos. They formulate a multiview-consistent 
and rigid rotation-invariant 3D pose representation and refer to it as a canonical pose. The canonical 
pose is obtained by constraining the bone connecting the pelvis to the left hip joint to be always parallel 
to XZ plane. The advantage of a canonical pose compared to a view-specific pose is that it does not 
need to change the orientation with variations in the camera view.  

Regarding recent detection-based approaches, the com-pressed volumetric heatmaps [21] propose to 
use high resolution input images, transform them into a compressed volumetric representation using 
an autoencoder network and then use a second model to decode the compression. A coarse-to-fine 
approach [54] uses a volumetric (voxel) representation of the scene. Multi-stage architecture first 
outputs coarse voxel predictions and refines them throughout many encoder-decoder subnetworks. A 
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cross-view fusion [59] extracts heatmaps from multiple views and then use a newly proposed recursive 
pictorial structure model [4] to generate 3D pose predictions. A very similar approach was seen in a 2-
year earlier work by Pavlakos et al. [55], but they used a regular 3D pictorial structures model. A 
marginal heatmaps approach [51] uses heatmaps to predict object’s margins instead of predicting joints 
directly. The approach is very successful, being top #1 on the MPI-3DHP dataset’s benchmark (see 
Sec. 4). The marginal heatmaps approach uses integral regression [67].  

An integral human pose regression [67] shows that the detection- and regression-based approaches 
can be combined. Problem with the detection-based approaches is the max-operator applied on the 
heatmaps that is not differentiable, effectively acting as a postprocessing step. Instead of max-operator, 
the authors propose to use the soft-argmax and call the approach an integral regression. As the 
operation is now differentiable, the joint predictions can be regressed using 3Dground truth. Learnable 
triangulation approach [30] exploits the combination of detection- and regression-based approaches 
from [67] in a multi-view camera configuration. Assuming that the camera locations are known, they 
pose a problem as a differentiable triangulation. The learning triangulation approach was proven to be 
the most successful multi-view and 3D pose estimation approach of all, at the moment of writing this 
paper (see Sec. 4). Inspired by classical stereo matching problem [24], the epipolar transformer model 
[25] employs differentiable epipolar constraints on the pairs of views, assuming known camera 
parameters. Instead of combining 2D features via triangulation, the idea is to search for the 
correspondences on the epipolar lines, hopefully leading to 3D-aware features. Another approach that 
exploits the epipolar geometry [32] shows that the epipolar constraint can be exploited even without the 
unknown camera parameters, in a self-supervised fashion. Camera parameters are found implicitly, 
using the known correspondences between the joints. The model predicts 2D poses from the two views 
and then uses these poses to predict the 3D pose. In a separate branch, 3D poses are directly predicted 
from each image, separately. Supervision comes from the similarity between the 3D pose estimation 
from the two branches. An approach by Xuet al. [78] proposes to learn a pose grammar to explicitly 
incorporate knowledge about human body configuration, for example, kinematics, symmetry and motor 
coordination. The grammar is learned using a recurrent-type network on top of a base convolutional 
network that captures pose-aligned features from a single image.  

Trajectory space factorization [40] utilizes matrix factorization for sequential 3D human pose estimation. 
The 3D poses in all frames are represented as a motion matrix factorized into trajectory bases matrix 
and a trajectory coefficient matrix. The trajectory bases matrix is precomputed from matrix factorization 
approaches such as Singular Value Decomposition (SVD), and the problem of sequential 3D pose 
estimation is reduced to training a deep network to regress the trajectory coefficient matrix. A method 
by Hossain et al. [26] uses an LSTM network to utilize the temporal information across a sequence of 
2D pose locations to estimate a sequence of 3D poses. VideoPose3D [56] is a semi-supervised model 
that jointly learns trajectory and pose submodels based on 3D-to-2D projection error. They also learn a 
supervised model based on labeled 2D poses and add a soft constraint to match the mean bone lengths 
of the unlabeled predictions to the labeled ones. The proposed architecture used in Video-Pose3D is 
called temporal convolutional networks (TCNs). Anatomy3D [13] decomposes the task into bone 
direction and bone length prediction. A shown in [35], knowing bones’ lengths and directions is sufficient 
to derive 3D joint locations. Additionally, they employ an implicit attention mechanism to feed the 2D 
keypoint visibility scores into the model as extra guidance, which significantly mitigates the depth 
ambiguity in many challenging poses. VNect [45] is a real-time, single-person monocular pose 
estimation system. The system tracks a bounding box throughout the frames. Based on a person-
centered bounding-box crop, the trained convolutional network predicts 2D heatmaps and 3D location 
maps for all joints. The temporal filtering, smoothing and the skeleton fitting is applied on the 2D and 
3D pose estimations to obtain temporally coherent 3D poses. XNect [46] is a multi-person improvement 
over VNect, consisting of three stages. The first stage uses convolutional network to predict heatmaps 
representing the 3Djoints, in a bottom-up fashion. The second stage uses a fully connected network for 
every person in the image, in parallel, to obtain the complete 3D poses. The third stage is similar to 
VNect as it applies a temporally stable kinematic skeleton fitting.  

Occlusion problem is tackled in the occlussion-aware-network approach [16]. The model generates 2D 
confidence heatmaps to detect the unreliable, occluded joints. The occluded joints are fed into a 
temporal convolutional network [56] that predicts the joint locations based on optical flow and temporal 
consistency. Single-shot multi-person approach [44] proposes so-called occlussion-robust pose-maps 
(ORPM)that introduce redundancy into the location maps proposed by VNect [45]. Redundancy is 
added by allowing the read-out of the complete pose in some of the location maps. The number of 
ORPM has a fixed number of outputs, but the redundancy still enables the encoding the poses of 
multiple overlapping people. A very practical and successful monocular approach (see Sec. 4) is 
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proposed by Cheng et al. [17], coping with the problem of human pose estimation in video. As people 
in videos appear in different scales and have various motion speeds, they apply multi-scale spatial 
features for 2Djoints’ predictions in every frame, and multi-stride temporal convolutional networks 
(TCNs) [56] to estimate 3D joints. They also explicitly mask random joints during training to specifically 
cope with the occlusions using data augmentation.  

A model by Rhodin et al. [60] learns to predict 3D human pose from a single view, by learning in a multi-
view con-figuration. The key elements of their approach are the multi-view constraints that enforce the 
correct rough estimates of the pose orientations. The weak supervision, however, was not sufficient, so 
they also used 3D ground truth, when available. 

4. Evaluation 

The most common evaluation metric for 3D human pose estimation is a mean per-joint precision error 
(MPJPE). For a single frame f and a single pose p in the frame f, MPJPE is computed as an L2-norm: 

��������, 
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Where Np is the number of joints in the pose p. In multi-person pose estimation tasks, for a collection 
of frames fi in Φ, the error is the average over the MPJPEs of all frames and poses Π: 
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Where NΦ is the number of frames and NΠ number of poses in the frame fi. This evaluation procedure 
was named protocol #1 in the simple-yet-effective paper [42]. A protocol #2 first aligns the predicted 
and ground truth poses using the Procrustes alignment. We believe that today’s state-of-the-art has 
reached a level where the only relevant evaluation protocol should be #1, without the need for the prior 
alignment. Therefore, we report the protocol #1 results in the Tab. 3 on Humans3.6M dataset, in the 
Tab. 4 on MPI-3DHP dataset and in the Tab. 5 on HumanEva dataset. We also point out the important 
features of the approaches, some of which overlap with the ones in Tab. 1. 
 

Tab 3. Quantitative comparison of the state-of-the-art methods for 3D pose estimation 
on Human3.6M dataset [28] (protocol #1). 

 MPJPE SUPERV. #CAM TEMP. DET./REG. EXTRA DATA 

[46] 63.6 superv. mono yes det. no 
[3] 63.3 Superv. mono yes Reg. no 
[55] 56.9 Unsuperv. multi no Det. no 
[73] 50.9 Unsuperv. mono no det/ no 
[56] 46.8 Semi-sup. mono yes Reg. no 
[40] 46.6 Super. mono yes Reg. no 
[13] 44.1 Superv. mono yes Reg. no 
[16] 42.9 Superv. mono yes reg no 
[38] 42.6 Superv. mono N Reg. no 
[17] 40.1 Superv. mono yes Det. no 
[59] 26.2 Superv. multi no Det. yes 
[25] 19.0 Superv. multi no Det. yes 
[30] 17.7 Superv. mult no Det. Yes 
 

Tab 4. Quantitative comparison of the state-of-the-art methods for 3D pose estimation 
on MPI-3DHP dataset [43] (protocol #1). 

 MPJPE SUPERV. TEMP. DET./REG. EXTRA DATA 
[46] 98.4 superv. Yes det. no 
[73] 92.5 unsuperv. No det. yes 
[51] 60.1 superv. No det. no 
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Tab 5. Quantitative comparison of the state-of-the-art methods for 3D pose estimation 
on HumanEva dataset [64] (protocol #1). 

 MPJPE SUPERV. TEMP. DET./REG. 
[29] 38.9 superv. No reg. 
[49] 26.9 superv. No reg. 
[42] 24.6 superv. No reg. 
[54] 24.3 Superv. No Det. 
[78] 22.9 Superv. no Reg. 
[26] 22.0 Superv. Yes Reg. 
[16] 14.3 Semi-sup. No Det. 
[17] 13.5 Semi-sup. yes Det. 

5. Discussion 

From the Tab. 1, we can observe that most of the approaches for 3D pose estimation are top-down and 
therefore limited to a single-person pose estimation. The reason why most of the methods are top-down 
is because the bottom-up approaches require a whole scene processing to achieve invariance on the 
number of people, which is resource-demanding. Resource consumption problem is directly related to 
detection-based approaches that are bound to represent the whole scene, either using multiple 
heatmaps that represent depth [67] or using voxels [54]. There are a few successful attempts to cope 
with the high resource consumption problem of detection-based methods, using compressed volumetric 
heatmaps [21] and using location maps instead of heatmaps [46, 44]. Regression-based methods, on 
the other hand, were never used in a bottom-up fashion. We may explain this by the fact that single-
person pose estimation is still too difficult for the regression-based methods - the top performing 
methods on all the three presented datasets (Tab. 3, 4 and 5), both multi-view and monocular are 
detection-based. However, most of the top performing monocular methods on Human3.6M (Tab. 3) are 
regression-based, so learning bottom-up regression might be worthwhile.  

The approaches that apply an iterative refinement approach [44, 59, 32, 11, 55] (Tab. 1) report an 
increase in performance. Most notably, a cross-view fusion approach [59] is the third best multi-view 
approach on Human3.6M dataset (Tab.3). Another important observation is that only a single method 
from the Tab. 1 [48] reconstructs 3D poses in absolute coordinates. Most of the methods reconstruct 
the poses up-to-scale, i.e., either the ground truth poses are normalized in the preprocessing step or 
the predicted poses are first scaled to match the ground truth size and then evaluated. This means that, 
even if the method reconstructs multiple people in the scene, it still does not know the depths (distances 
from the camera) of these poses.  

Observing Tab. 3, it is obvious that multi-view approaches are significantly better performing, which is 
expected. Supervised approaches are more successful on Human3.6M (Tab. 3 and MPI-3DHP (Tab. 
4) but, interestingly, semi-supervised approaches [17, 16] are the most successful on the HumanEva 
dataset (Tab. 5). Note that the best performing method in HumanEva is also exploiting the time 
component (the model is learning from a video). Based on Tab. 3, 4 and 5, we cannot say whether 
exploiting the time component brings a performance gain in terms of MPJPE. Also, it is obvious that the 
three datasets are not equally difficult. The best methods achieve 17.7mm, 60.1mm and 13.5mm for 
the Human3.6M, MPI-3DHP and HumanEva datasets, respectively. We can therefore conclude that 
MPI-3DHP dataset is currently the most challenging 3D human pose estimation dataset. 

6. Conclusion 

In this work, we have reviewed 3D human pose estimation approaches and datasets, extracted and 
commented on their common features, presented state-of-the-art methods and compared them based 
on a single evaluation protocol (MPJPE, protocol #1). Deep learning-based 3D pose estimation 
achieves remarkably low MPJPE, but still lacks the ability the recover the absolute scale and is unable 
to reconstruct multiple 3Dposes in a fully-differentiable manner. The future works might be motivated 
by the success of the detection-based 2D pose detection methods [9, 50], focusing on the low-resource 
implementation that avoids directly embedding the whole scene into a deep learning model via 
heatmaps. Regarding low-resource and non-GPU approaches, a lightweight OpenPose [52] is an 
example of a successful GPU-to-CPU transition, keeping real-time performance, while sacrificing a bit 
of accuracy. In the future, we might expect more real-time and low-resource proposals that are able to 
reconstruct the absolute pose dimensions in an end-to-end learning fashion. 
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