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Abstract 

Immersive Virtual Reality (IVR) studies indicate that there is some level of the brain that does not 
distinguish between reality and virtual reality. In this context, a self avatar embodied from first person 
perspective brings a significant and lasting change to the user. IVR is therefore widely used in research 
and for psychological and physiological health rehabilitation. We use IVR in a wide range of areas in 
pain and mobility, emotional health, diversity equity and inclusion, to rehabilitate domestic violence 
offenders and to promote healthier lifestyles among obese people (Fig. 1). A remaining challenge is to 
accurately and efficiently create avatars with body shapes and appearance that closely match those of 
the real user’s bodies. This is owing to the huge differences in human body forms, the reduction of the 
complex human shape by body scanning technology and the complexity of acquiring accurate body 
measurements. 
The primary objective of this work was to construct a cost-effective and accurate model to infer the 3D 
shape from a front and side image of a person taken with a smartphone. To achieve this, we used a 
fully morphable human body model to change the body shape using a set of body shape modifying 
parameters. We create a dataset of thousands of computer generated front and side images varying 
the shape modifiers of the morphable model. We then train a convolutional neural network (CNN) using 
that dataset (Fig. 3). 
Our approach efficiently infers 3D human body shapes from a person’s front and side image generating 
an accurate representation of a person. We made preliminary tests using a set of 10 body scans with 
known measurements, creating computer generated front and side images of the scans and using these 
images as input to the CNN and to compare the resulting body shape with the original 3D body scan. 
Our results demonstrate the effectiveness of the designed approach (Fig. 5, Fig. 6). 
Our proposed model enables us to create a fully movable avatar that can be embodied in IVR from a 
front and side smartphone photo in a fully automated way. The same inferred shape modifiers can also 
be used on the clothing of the avatar to enable us to dress the avatar. Although a larger comparative 
study needs to be performed before the use of this approach can be routinely recommended, we believe 
that the convenience and ease-of-use of this model will contribute to increase the reach of VR tools 
with look-alike avatars also in clinical settings. 

Keywords: 3D Body Scanning, Body Measurement, 3D Body Shape, Virtual Reality, Embodiment, 
Deep Learning, Machine Learning, Health Application, Convolutional Neural Networks, Computer 
Vision 

1. Introduction

In cognitive neuroscience, a very fundamental question is how the brain represents our own body [1]. 
Here, when many of us think of our own body representation, we see it as a stable and unchanging 
depiction. However, several studies have induced in different people the illusion of body ownership over 
external objects that were not part of the human body at all. This refutes the immutability of our own 
body representation and suggests that this representation can indeed be very malleable [1-3]. 
Additionally, it has been shown that the illusion of body ownership can also spread and be induced 
throughout the whole body [4-6]. In this line of thought, several studies have shown that in order to 
induce this body ownership across the whole body, a first-person perspective of the artificial body is 
key [4-5,7]. This whole-body ownership illusion from a first-person perspective is described as the 
sensation of possessing an artificial body, in which the real body is substituted as the origin of the 
perspective sensations.  
Nowadays, this so-called body ownership illusion can be induced with immersive virtual reality (IVR) 
systems that allow users to substitute a person's real body for a virtual representation. IVR users have 
the sensation of being “embodied” in that virtual body [5,8]. Furthermore, with the use of IVR we can 
act on the virtual body seen from a first-person perspective and experimentally manipulate the 
multisensorial integration in a highly controlled way. For example, you can manipulate the 
representation of the body in terms of structure, shape, size, and color in a way that contrasts sharply 
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with our image of our own body [9-12]. In addition, it has been shown that by manipulating the properties 
of the virtual body, it is possible to influence the physiological response of the real body [13-14], and 
may also modulate behavioral responses of the subjects [15-16], creating a substantial and lasting 
change to the user. 
For this reason, immersive virtual reality has been found to have many potential uses in psychotherapy, 
rehabilitation, behavioural neuroscience [17-19], and even consciousness research [20]. IVR is 
therefore widely used in physical and mental health research and rehabilitation. This is the case, for 
instance, of our projects and developments. We use break throughs in neuroscience and virtual reality 
research to change society in a wide range of areas: pain and mobility, emotional health, diversity equity 
and inclusion, to rehabilitate domestic violence offenders and to promote healthier lifestyles among 
obese people (Fig. 1). 
 

 

Fig. 1. A virtual scenario of our conVRself specially adapted to promote healthier lifestyles among obese people. 
(A) An overview of the scene from just behind the viewpoint of the participant who can see him/herself in the 
mirror and the healthier virtual representation of him/herself across the table. (B) From the virtual body of the 
healthier virtual representation of him/herself the participant can see his/her reflection in the mirror and the 

representation of him/herself across the table. 

 
One of the key problems in merging VR and neurosciences applications originates from the importance 
of having a good self-body representation in an IVR experience. Some models already exist today that 
deal with 3D body scan using booth scanners, portable scanners, or mobile applications converting 2D 
photos to 3D models. However, most of them show that an area that is still pending is to accurately and 
efficiently create avatars with body shapes and appearance that closely match those of the real user’s 
body. This is owing to the huge variety of human body forms, the reduction of the complex human shape 
by body scanning technology and the complexity of acquiring accurate body measurements. 
In this paper, we constructed a cost-effective and accurate model to infer the 3D human body shape 
from a front and side image of a person taken with a smartphone using Convolutional Neural Networks 
(CNN). Our proposed model, which efficiently infers human silhouettes, enables us to create a fully 
movable and clothed avatar that can be embodied in IVR. 
 

2. Materials and Methods 

In this section, we introduced our dataset using a fully morphable human body model, followed by its 
preprocessing methodology and training, validation, and testing criteria. Then, we describe the model 
architecture of our proposed approach and the validation process. 
 
2.1. Data Collection 

We collected overall 4262 computer generated front and side images using a fully morphable human 
body model. This fully morphable human body model is a fully animatable avatar including body 
skeleton and facial morph targets adapted to the SMPL shape parameters. The Skinned Multi-Person 
Linear model (SMPL) [21] is a skinned vertex-based model that accurately represents a wide variety of 
body shapes in natural human poses while modifying only 10 shape parameters (blendshapes). This 
simple formulation enables us training our model using a relative large number of front and side images 
of different people with different body sizes.  
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For training purposes, we need a dataset which has images and labels attached to it. Each front and 
side image has as label its own combination of blendshape values.  
The original image resolution was 1080 x 1080 pixels. The main objective related to this dataset is the 
automatic inference of the combination of blendshape values, most importantly that the body shape 
closely matches that of the real user’s body. 
 
2.2. Preprocessing 

The dataset used in this paper contains numerous front and side images of different body sizes 
maintaining the same whole body pose. However, these conditions are difficult to maintain, as person 
position and rotation may be different in future front and side images. Moreover, sometimes some body 
parts (arms, feet, head, hair) are redundant for the training process and can cause mismatches when 
predicting the bodyshape of a person. Other redundant areas are the entire background of the image 
outside the person's silhouette. As these wrong postures, differences on the person position, 
unnecessary body parts or leftover pixels may adversely affect the training process of the CNN model, 
we decided to apply a body part segmentation tool to process each front and side 1080 x 1080 image. 
There are many deep learning architectures which could be used to solve the instance segmentation 
problem [22], however, in this work we used an improved baseline from DensePose [23], a project from 
Detectron2 [24] which is a Facebook AI Research's next generation library that provides state-of-the-
art detection and segmentation algorithms. Its goal is to assign semantic labels (e.g., person, sheep, 
airplane and so on) and, once a person is identified, then mapping all human pixel of an RGB image to 
the 3D surface of the human body and to annotate the different human body parts (trunk, arm, legs, 
etc). 
After having tested different models, we have focused on using the one that gave us the best 
performance when it comes to correctly separate body parts of each person: densepose_rcnn_R_101 
_FPN_DL_s1x.yaml, an improved baseline of DensePose with a DeepLabV3 Head. The applied model 
uses an improved training schedule, Panoptic FPN head [25] and DeepLabV3 head [26].. 
Following this procedure, front and side person images are first human detected and segmented into 
different body parts. Next, coloured images are converted into greyscale images. Then, images are 
downscaled to the desired dimension of 128 x 128 pixels. Finally, front and side image dataset are 
independently processed. Front dataset contains trunk and leg as separated images, while side dataset 
contain trunk and leg as a whole image.  
The example of original and body segmented and processed images are shown in Fig. 2. 
 

 
Fig. 2. The example of original front (A1) and side (B1) computer generated images, human detection and body 

part segmentation (A2,B2), and independent processing of front and side images (A3,B3). 
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2.3. Training Criteria 

For the model construction, we selected 80% of images for training and the remaining 20% for testing 
purposes, with similar percentage of different body size  images. In this way, 3409 images were used 
for training whereas the remaining 853 images were kept for testing the model. Following [27], we used 
5-fold cross-validation on training images, which means that 2727 images were used for training and 
682 images for validation purpose. The standard protocol [28-29] is based on partitioning the original 
data in N subsets and execute the algorithm N times. During each run, N-1 subsets are used as training 
data and the remaining subset as testing data in which we will estimate the model’s performance. This 
approach gives a much larger training set for each test, which means that the algorithm will have enough 
data to learn from without overfitting. Once each subset (of variants) has been set aside as a test set, 
we can obtain the model performance, by averaging that of the test sets. 
 
2.4. CNN architecture 

Convolutional Neural Networks (CNN) [30] have applications in image and video recognition, 
recommender systems, image classification, image segmentation, medical image analysis, natural 
language processing, brain-computer interfaces, and financial time series. CNNs are regularized 
versions of multilayer perceptrons. Multilayer perceptrons usually mean fully connected networks, that 
is, each neuron in one layer is connected to all neurons in the next layer. Regularization is the process 
of adding information in order, for instance, to prevent overfitting. They are based on the shared-weight 
architecture of the convolution kernels or filters that slide along input features and provide translation 
equivariant responses known as feature maps. 
As one of the state-of-the-art algorithms in the field of computer vision, CNN can effectively extract 
spatial-related high level features. Different from the manual setting parameters of traditional spatial 
feature extraction methods, the CNN-based method can automatically learn the spatial-related 
parameters layer by layer [31-32]. 
In this model (Fig. 3), there are 3 CNN blocks, and each block consists of 2 convolution layers, 2 max-
pooling layers and a fully-connected layer. The Relu activation function is used to remove negative 
values from the feature map because there can not be negative values for any pixel value. Stride(1,1) 
used and padding is also 1. Then, there is a final block that consists of a fully-connected layers that 
merges extracted features from the three input images. 
 

 
Fig. 3. Architecture from the CNN model to infer 3D body shapes using front and side images. 

 

2.5. Experimental environment 

We implemented all the experiments related to this article by using Python 3.7.9 along with TensorFlow 
1.15.4, Torch 1.4.0 and TorchVision 0.5.0 installed on a standard PC with Nvidia GeForce GTX 1070 
graphics processing unit (GPU) support. Moreover, this PC has a RAM capacity of 16.0 GB and holds 
a 3.60 GHz Intel(R) Core(TM) i7-7700K processor. 
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2.6. Evaluation Metrics 

Until now, we have spoken about performance in an abstract way. At a practical level, however, there 
are different options to measure it, that is, to estimate the success rate of a method. Any performance 
measure is based on four fundamental quantities obtained after applying our predictor to any mixture 
of known variants [33]: TP (true positives); TN (true negative); FN (false negative); FP (false positive). 
These four quantities are then combined to produce single measures of performance. As a combination 
of these four quantities, accuracy (ACC) is frequently employed as is considered to be more informative 
than other measures [34]. ACC evaluates the correctness of a model, and is the ratio of the number of 
images accurately classified out of the total number of testing images. 

 

 
 

As it is advised to describe the performance of a predictor providing several measures, we also defined 
an evaluation metric suitable to be used for a regression. Unlike classification, accuracy in a regression 
model is slightly harder to illustrate. It is impossible for you to predict the exact value, but rather how 
close your prediction is against the real value. We used the Mean Square Error (MSE) as an absolute 
measure of the goodness for the fit [35].  
 

 
 
MSE is calculated by the sum of square of prediction error which is real output minus predicted output 
and then divide by the number of data points. It gives you an absolute number on how much your 
predicted results deviate from the actual number. Together with the model accuracy, it gives us a real 
number to compare against other model results and help us select the best regression model. 
 
2.7. Hyperparameter Tuning 

Neural networks have the ability to learn complex connections between their inputs and outputs. Some 
of these connections, however, may be the consequence of sampling noise, thus they may appear 
during the training phase but not in the real test dataset. In this case, overfitting can occur and therefore 
can degrade the prediction performance of a deep learning algorithm [36]. Therefore, we followed the 
procedure of tuning the hyperparameters to obtain the overall performance of the proposed model [37]. 
The methods used to select the best hyperparameters are: First, select the mean squared error as the 
loss function for the multi-class regression problem. Then, during training, Adam's algorithm (adaptive 
momentum estimation) was used to perform a 500 epoch optimization. During this period, we tried 
several learning rates (0.10-0.00001) and different batch sizes (1, 16, 20, 32, 50, 6, 100, 150, 300, 500, 
1000). During the model training, our main goal was to minimize the overall difference between training 
loss and validation loss. Batch size 20 was found to work well with a learning rate of 0.001. Additionally, 
we used a dropout rate of 0.2 to avoid the model from overfitting during training. We then used the 5-
fold cross-validation method based on its minimal validation loss by using a 5-fold cross validation 
approach. Finally, we used these weights for the multi-class regression on the test dataset. 
 
2.8. “Real-World” External Test Data 

In this work, we used CAESAR data [38], which contains three-dimensional (3D) whole-body scans, to 
additionally test our constructed model. We demonstrate the ability and the effectiveness of the reported 
deep learning approach in the “real-world” data by comparing model predicted bodyshapes with 
scanned CAESAR body shapes. We used and compared 4 discrete measurements as a description of 
the body shape: waist, hip, chest and leg. 
 

3. Results and Discussion 

Convolutional Neural Networks (CNN) are widely used for image recognition and classification. In this 
work, the performance of CNN were evaluated for inferring human body shapes from a person’s front 
and side image. Table 1 shows the evaluation metrics of the train set, validation set and test set of the 
CNN model. To consider a model as the best model, it must have performed well in the training data 
set and the validation data set [39]. In this sense, results shown in Table 1 were found to be from the 
best model.  
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Table 1. Evaluation metrics of the best CNN model. 

 
 

As we can see in the previous table, in the computer generated front and side images using a fully 
morphable human body model, the CNN model was found to reach 98,78% accuracy on the test set. 
This high performance of the model on the test set validates the generalization ability of the model. 
During the model construction, the variation trend of training loss almost overlaps validation loss (Fig. 
4A). At the same time, the variation trend of training accuracy is additionally according to that of 
validation accuracy (Fig. 4B). This situation shows that the model does not have an overfitting problem 
with the parameters chosen during the training process. These results show that the proposed 
architecture can distinguish the matched images within the input well and thus efficiently infer 3D human 
body shapes from a person’s front and side image, generating an accurate representation of a person.  
 

Fig. 4. Training and Validation Loss (A) and Accuracy (B) of the CNN model during the model training for inferring 
human body shape from front and side images. 

 
Additionally, we also used an external validation dataset: the CAESAR data, which contains three-
dimensional (3D) whole-body scans. After generating front and side images of each CAESAR sample, 
we tested the CNN model on them and compared 4 discrete body shape measurements (waist, hip, 
chest and leg circumferences). Each body measurement was calculated for each 3D human model 
separately. The mean of the differences between CNN model prediction and CAESAR scan per each 
body measurement is shown in Fig. 5A, table on the left side. According to the table, and the small 
difference in centimetres, it can be said that predicted measurements by the CNN model are on average 
highly similar to the real CAESAR scans. In Fig. 5B, the similarity between the predicted body shapes 
and CAESAR scans are also depicted. 

A B 
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Figure 5. The table on the left shows the mean measurement differences from CAESAR scans and Predicted 

Body Shape. Images on the right show 4 from 10 tested samples. Grey avatars are real scanned humans, while 
textured avatars are the predicted body shapes. 

 

In order to complete the above analysis on model viability, we tested our CNN model with a real person 
using a front and side image (Fig. 6).  
 

 
Fig. 6. Testing the Constructed Model to infer 3D Human Body Shape with a real sample. Front and side images 
were taken from a participant. Then, extracting the silhouette and segmenting the different body parts. Finally, 
generate black and white 128x128 images and test the CNN model. Real and predicted 3D body shapes are 

shown on the right side of the figure. 
 
In summary (Fig. 5 and Fig. 6), our results demonstrate the effectiveness of the presented approach. 
Our CNN model accurately infers 3D human body shapes from a person’s front and side image 
generating an accurate representation of a person and creates a fully movable avatar that can be 
embodied and used in IVR. Moreover, the same inferred shape modifiers can also be used on the 
clothing of the avatar to enable us to dress the avatar.  
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4. Conclusions 

In this paper, we have proposed a novel model that efficiently infers 3D human body shapes from a 
person’s front and side image, generating an accurate representation of a person. The proposed 
method has the following characteristics: 1) overcomes the singularity and the variety on the different 
human body shapes in both men and women; 2) the CNN-based spatial feature extraction technique 
overcomes the inefficient and unaccurate process of manually selecting the avatar’s body shape; 3) 
combining CNN and Semantic Image Segmentation leads to excellent classification accuracies; 4) it 
creates a fully morphable avatar with a series of shape modifiers that allows to change the body shape 
of an embodied avatar at run time inside any IVR experience; 5) The same inferred shape modifiers 
can also be used on the clothing of the avatar to enable us to dress the avatar; 6) the process from a 
person’s image to a fully movable avatar is done in a fully automated way; 7) we believe that the 
convenience and ease-of-use of this model will contribute to increase the reach of VR tools with look 
alike avatars also in clinical settings. 
However, the proposed method can still be revised in some aspects. For instance, a larger comparative 
study needs to be performed before the use of this approach can be routinely recommended. Also, we 
would like the final approach to be extensible to other human models, not only applicable to SMPL 
models. Therefore, our future work will focus first on improving the performance validation and, second, 
on how to select the optimal approach and existing human models in order to obtain a fully morphable 
avatar with the best 3D body shape inference. 
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