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Abstract 

The National Institute for Occupational Safety and Health (NIOSH) requires N95 masks to provide 
adequate fit to at least 95% of the US population through a fit test panel, with defined face dimensions. 
However, researchers for many years have reported discrepancies with N95 mask fit for women and 
minorities. More recently with the COVID-19 pandemic, these issues were critically raised again locally 
when a hospital mask fitter explained to the PI issues of mask fit with women and minorities, and the 
challenges of finding available masks on the market that protect appropriately. A pilot study was 
conducted with 3D face scans from the Civilian American and European Surface Anthropometry 
Resource (CAESAR) dataset to uncover how exemplar faces identified through an unsupervised 
machine learning algorithm measured and compared to an existing N95 pleated mask (Crosstex Isolator 
Plus). The algorithm was based on a Variational Autoencoder (VAE) with a Point-Net inspired encoder 
and decoder architecture trained on Human point-cloud data obtained from the CEASAR dataset. The 
pilot demonstrated that the algorithm worked well to identify exemplars for sizing buckets based on sex 
and race and proved that ML could help replace tedious anthropometric measuring practices to develop 
sizing systems. From the anthropometric measures collected from the exemplars, 37.5% fitted 
lengthwise and widthwise into the mask, where 16.7% of the exemplars fitted in the length only, and 
20.8% in the width only. Twenty-five percent did not fit at all into the mask. The results of this work 
highlight how critical it is for N95 mask manufacturers to look at the sizing and fit of masks differently. 
Multiple sizes are needed within a mask style and sex/race must be considered through relevant 3D 
anthropometric face/head data that represents users appropriately when developing equitable sizing 
systems for Personal Protective Equipment (PPE). 
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1. Introduction 

N95 masks are items of PPE worn over the nose and mouth that remove contaminated airborne aerosol 
particles and droplets [1]. N95s are designed to filter at least 95% of contaminants with a minimum 
particle size of .3 microns [2]. They do so through filtration materials, typically made from electrostatic 
non-woven polypropylene fibers [2]. N95s only protect if they fit properly, where the shape and size of 
the mask interfaces appropriately to the wearer’s facial anthropometry [3]. In the U.S., N95 mask fit is 
determined thorough qualitative and quantitative fit test procedures defined by the Occupational Safety 
and Health Administration (OSHA) [4]. Fit testing of N95 masks has been a mandatory requirement for 
all health care workers in the U.S since 1969 [5].  
 
Despite protocols developed by OSHA to ensure a good fit, researchers for many years have 
documented discrepancies with N95 mask fit for women and minorities [6,7,8]. For example, Regli et 
al. (2021) found mask fit-pass rates differed between males and females by 95% and 85% respectively 
[6]. In the same study they reported Caucasians (male and female averaged) had higher fit-pass rates 
than Asians (male and female averaged) at 90% and 84%, respectively [6]. When the Asian data was 
narrowed down to just female subjects, a much lower fit-pass rate was reported of 60% [6]. Wilkinson 
et al. (2020) also found that Caucasian subjects had higher fit-pass rates compared to Asian subjects 
(excluding South and Central Asia subjects) of 90.2% versus 83.7% [7]. With the COVID-19 pandemic, 
these issues were critically raised again locally when a hospital mask fitter explained to the PI issues 
of mask fit with women and minorities, and the challenges of finding available masks that protect  
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appropriately [9]. To understand the gravity of this challenge, a pilot study was conducted 3D face scans 
from the CAESAR U.S. dataset [10] to uncover how exemplar faces when identified by sex and race 
through an unsupervised machine learning algorithm measured and compared to an existing N95 
pleated mask – the Crosstex Isolator Plus N95 mask [11]. The research provides a framework for 
understanding sizing for large 3D anthropometric datasets to insure equality amongst sex and race.  

2. Background 

Twenty-two million workers were reported to be employed, by the U.S. health care industry in 2021 [12]. 
Sixty percent of those workers were White, and 40% were people of color - including 16% Black, 13% 
Hispanic, and 7% Asian [13]. Women make-up 75% the work force, and most are employed as nurses 
[14]. Table 1 presents percentages of female health care workers in the U.S. by role and race [15].  
 

Table 1. Women as a percentage of total employees by role and race [15]. 

 

Occupation All  

Women 

White 

Women 

Black 

Women 

Asian 

Women 

Latina 

Women 

Licensed Practical & Licensed 

Vocational Nurses 
90.8% 62.3% 23.9% 2.5% 12.1% 

Registered Nurses 89.0% 68.0% 11.3% 7.4% 6.2% 

Nurse Practitioners 88.0% 67.6% 11.1% 8.4% 2.2% 

Healthcare Support Occupations 86.9% 56.1% 23.1% 4.1% 16.7% 

Physicians/Surgeons 40.8% 27.0% 4.6% 8.3% 3.2% 

Emergency Medical Technicians 

& Paramedics 
33.5% 29.1% 3.4% 0.0%* 3.9% 

*Not Reported 

 
Since most healthcare workers are women, and they take part in more caregiving than diagnosing 
occupations, they face a disproportionate risk of contracting infectious diseases compared to men 
[14,16]. This includes women of color who are represented in all healthcare occupations from 25% 
(Emergency Medical Technicians & Paramedics) to 78% (Healthcare Support Occupations) [15]. To 
demonstrate the risks faced by women, it was reported that 73% of healthcare workers who tested 
positive for COVID-19 in the U.S. were women [17]. When considering race amongst male and female 
workers combined, the CDC found more than half (53%) of the confirmed COVID-19 cases were among 
people of color, including 26% Black, 12% Hispanic, and 9% Asian workers [13]. Knowing that women 
and minorities have a higher risk of contracting disease in a healthcare setting, it should be imperative 
that they have access to N95 masks that fit appropriately. However, the literature has shown this is not 
the case. How could research help address how we size and fit N95 masks for women and minorities?  

3. Experimental Procedures 

There are several contributing factors to N95 mask fit. They include lack of relevant user 3D 
anthropometric data, 3D anthropometric data analysis, mask design and sizing. This paper addresses 
3D anthropometric data analysis and sizing, through an unsupervised machine learning algorithm to 
see how exemplars defined, sized into a common U.S. hospital N95 mask. This research was also an 
attempt to help replace tedious anthropometric measuring practices to develop sizing systems for PPE. 
 

3.1. 3D scan selection and preparation  

Given the circumstances surrounding the COVID-19 pandemic and inability to collect new 3D 
anthropometric user data, the researchers sought to find an existing and available large dataset that 
could be piloted with a ML algorithm to understand the fit challenges experienced by women and 
minorities. This study utilized the Civilian American and European Surface Anthropometry Resource 
CAESAR dataset [2]. The dataset contains body scans from U.S. subjects along with associated 
demographic data and anthropometric landmarks.  
 
X, Y, Z point cloud coordinates were extracted from each scan, from the vertices stored in each 
associated PLY file. Relevant landmarks belonging to the face were isolated, to prevent extraneous 
information seen by the ML model. To isolate the face of each scan, three landmarks provided within 
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the CEASAR dataset were defined: 1) the cervicale (tip of the dorsal spine at the 
seventh cervical vertebra), 2) left tragion, and 3) right tragion (points situated in the notch just above 
the tragus). To reduce variation in head positioning, each scan was rotated so the vector between the 
left and right tragion was aligned with the y-axis. With these selections, only the points forward of the 
vertical plane defined by the tragions, the floor (x plane) and 4 cm area below the cervicale were utilized. 
It was necessary to include points below the cervicale to avoid truncating the chin of some participants. 
The selected points were then recentered to remove variations in scan height and point clouds were 
resampled by randomly selecting 10,000 points to create a fixed size dataset. Fig. 1 shows an example 
of the points extracted from an original CAESAR scan.  
 

Fig. 1. Example of the points extracted from an original CAESAR scan. 

 

 

 

 

 

 

 

 
 

3.2. ML algorithm 

The algorithm developed was based on a Variational Autoencoder (VAE) with a Point-Net inspired 
encoder and decoder architecture trained on Human point-cloud data obtained from the CEASAR 
scans, to identify exemplars by sex and race [18]. Variational Autoencoders (VAE) are non-linear 
dimensionality reduction techniques, that utilize deep neural networks [19,20]. The VAE for this 
research utilized a series of convolutional and fully-connect layers to encode the point cloud into a latent 
space with a reduced 3-dimensional representation, then subsequently a decoder utilized the latent 
space features to reconstruct the original point cloud. The model was trained on two objects: 1) a 
reconstruction objective that minimizes the difference between the original and reconstructed point 
cloud, and 2) a latent space objective that tends the learned latent space to be uniformly distributed.  
 
Exemplars for this research were defined as the data points with the minimum Euclidean distance to a 
given latent space point. To select exemplars, a simple k-means clustering in the latent space was 
conducted. This allowed several classification targets to be specified by identifying k. For this research, 
k=3 to represent small, medium, and large sizes. Each cluster center identified by the model could then 
be associated with an exemplar. Because White was the most dominant race in the CAESAR dataset, 
exemplars for each race and sex combination were established separately to understand how they 
contribute to mask fit. The CAESAR dataset contains demographic information on race with categories 
defined as African American, Asian, Spanish, and White and sex with categories female and male. The 
researchers acknowledge the outdated language of race categories communicated by CAESAR. 
 

3.3. Mask measures 

The Crosstex Isolator Plus N95 mask was chosen for this research because it had a simple pleated 
construction (not molded or curved) and could be generally sized to basic facial anthropometric 
measures. Two measures were taken from the mask: 1) Center Front (CF) length and 2) Width 
(Fig. 4). Each measure was taken three times and averaged. This mask only comes in one size. 

 

  

  Fig. 4. CF length and width measures on the Crosstex Isolator Plus N95 mask. 
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3.4. Anthropometric measures 

From the exemplars defined, simple face length and width measurements were collected to assess how 
the exemplars identified by the algorithm compared to the Crosstex Isolator Plus N95 mask. The face 
length measure was defined by the sellion to cervical point landmarks. The sellion landmark (the 
posterior point of the frontonasal contour in the midline of the base of the nasal root) was provided by 
the CASEAR data set, whereas the cervical point (the intersection of the chin and neck) was established 
visually by the research team. Exemplar scans were individually measured in AnthroScan [21] by 
creating persistent markers, taking a cross-section, and measuring the desired perimeter at the “1” 
setting, in cm (Fig. 2). Each measure was taken three times and averaged.  
 

  

Fig. 2. Face length - sellion to cervical point measure taken in AnthroScan. 

 
The face width measure was defined by the right tragion to nasal tip to left tragion landmarks. The 
tragion landmarks were provided by the CASEAR data set, whereas the nasal tip (midline tip of the 
nose) was established visually by the research team. Exemplar scans were individually measured in 
AnthroScan [20] by creating persistent markers, taking a cross-section, and measuring the desired 
perimeter at the “1” setting, in cm (Fig. 3). Each measure was taken three times and averaged.  

   

  

  Fig. 3. Face width - right tragion to nasal tip to left tragion taken in AnthroScan. 

4. Results 

4.1. ML defined exemplars 

Eighteen hundred and seventy-one CASEAR 3D scans (male and female) were analyzed with the ML 
algorithm. Three exemplar heads were identified for each sex (male/female) and race (African 
American, Asian, Spanish, and White) combination – totaling to eight size sub-groups with 24 faces. 
The three exemplars selected represented small, medium, and large sizes; however, that number could 
be adjusted to have depending on the research and sizing scope. Fig. 5. Demonstrates clustering in 
latent space with three size groups for sex and race data points. 
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Female/African American Female/Asian 

  
Female/Spanish Female/White 

  
Male/African American Male/Asian 

  
Male/Spanish Male/White 

  

Fig. 5. Clustering in latent space with three size groups for each sex/race data points. 

 

4.2. Mask measures 

Basic CF length and width measures of the Crosstex Isolator mask are presented in Table 2.  
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Table 2. Crosstex Isolator Plus N95 mask measurements (cm). 

 

Measure Location Measurement (cm) 

Mask CF Length 18.6 

Mask Width  18.6 

 
 
4.3. Anthropometric measures and fit comparisons  

Length and width face anthropometric measures were collected from the exemplars to see how they 
compared to the Crosstex Isolator Plus N95 mask. Before those comparisons could be made, the 
measures needed to be adjusted to consider how the mask would ultimately be worn on the face. In 
practice, masks do not fit lengthwise exactly from the sellion and cervical point and widthwise from the 
left tragion to nose tip to right tragion, they fit within a percentage from those landmarks. To understand 
those percentages, length measures taken from the sellion to the top edge of the mask and from the 
cervical point to bottom edge of the mask on a convivence sample (n=10) by the research team. It was 
determined on average masks cover 85.5% of the length from the sellion to cervical point. Since the 
CASEAR scans were taken with the mouth closed, the face length measure also needed to be adjusted 
for additional length when the user’s mouth opens when talking or yawning. Ironically, when data was 
collected from the same convivence sample by the research team, it was determined that the face 
length increased by 15% when the mouth was opened. Therefore, the face length was left to its’ original 
measure collected.  
 
Widthwise masks on average were found to cover 62.9% of the distance from the left tragion to nose 
tip to right tragion. This percentage was used to adjust the face width anthropometric measure. Mask 
fit comparisons (Table 4) were determined by the rules provided in Table 3. If the face measures were 
larger than the mask (>18.6 cm), then the mask was deemed too short. When the face measures were 
<2.5 cm smaller than the mask measures (16.1 cm), the mask was deemed too long. The 2.5 cm 
measure was defined by the research team by calculating the range of face length measures and 
dividing it by three (to represent small, medium, and large sizes).  

 

Table 3. Crosstex Isolator mask fitting rules. 

 

Condition Rule 

If face length is >18.6 cm Mask was too short lengthwise (TS) 

If face width is >18.6 cm Mask was too short widthwise (TS) 

If face length is <16.1 cm Mask was too long lengthwise (TL) 

If face width is <16.1 cm Mask was too long widthwise (TL) 

If face length is between 16.2 cm and 18.5 cm  Mask fits lengthwise (F) 

If face width is between 16.2 cm and 18.5 cm Mask fits widthwise (F) 

 
 

Table 4. Length/width face anthropometric measures and comparisons by sex/race. 

 

Sex Race # Face  

LEN (cm) 

Face  

WDTH (cm) 

Adj. Face  

WDTH (cm) 

Mask Fit Comparison* 

LEN/WDTH 

F African Am.  1 18.0 29.1 18.3 F/F 

 African Am. 2 17.0 29.2 18.4 F/F 

 African Am. 3 16.1 25.7 16.2 TL/F 

 Asian 1 17.0 27.7 17.4 F/F 

 Asian 2 15.7 28.1 17.7 TL/F 

 Asian 3 16.3 26.9 16.9 F/F 

 Spanish 1 17.2 28.5 17.8 F/F 

 Spanish 2 17.1 29.8 18.7 F/TS 

 Spanish 3 16.6 27.9 17.5 F/F 

 White 1 17.3 27.7 17.0 F/F 

 White 2 16.4 26.9 16.9 F/F 

 White 3 17.1 30.3 19.1 F/TS 
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M African Am.  1 19.8 29.1 18.3 TS/F 

 African Am. 2 19.1 30.3 19.1 TS/TS 

 African Am. 3 19.1 30.8 19.4 TS/TS 

 Asian 1 17.1 30.0 18.9 F/TS 

 Asian 2 15.1 26.2 16.5 TL/F 

 Asian 3 18.4 29.9 18.8 F/TS 

 Spanish 1 19.3 31.4 19.8 TS/TS 

 Spanish 2 18.6 30.1 18.9 TS/TS 

 Spanish 3 19.1 29.8 18.7 TS/TS 

 White 1 22.5 32.5 20.4 TS/TS 

 White 2 18.0 28.0 17.6 F/F 

 White 3 19.3 29.4 18.5 TS/F 

 

*Fit Key: TL – Too Long, TW – Too Wide, TS – Too Short, TN – Too Narrow, F – Fits 

 
From the measures collected from the exemplars, 37.5% fitted lengthwise and widthwise into the 
Crosstex mask, whereas 16.7% of the exemplars fitted in the length only, and 20.8% in the width only. 
Twenty-five percent did not fit at all into the mask. The results of this work demonstrate the power of 
averages and how they are not the best method for developing sizes. For example, if the face length 
and width measures from all sexes/races were averaged in this study, they would equate to 17.8 cm 
and 18.2 cm respectively, which would fit within the Crosstex fit rules devised for the study. However, 
when sex and race are isolated, it is clear how certain exemplar groups would be excluded from having 
a good mask fit. What is important to note here is that the exercise used in this study would not replace 
fit protocols standardized by OSHA. This was merely an exercise to look at simple exemplars measures 
and how they compared to one N95 mask to highlight how sizing methods need to be reconsidered. 

5. Discussion and Conclusions   

The results of this research demonstrate the use of Variational Autoencoder (VAE) with a Point-Net 
inspired encoder and decoder architecture that can learn small and useful latent spaces from 
complicated 3D-point clouds. The algorithm was also able to identify a broad set of exemplars to use 
as small, mediums and large size targets fit and proved that ML could help replace tedious 
anthropometric measuring practices to develop sizing systems. When sex and race are separately 
considered, the exemplars demonstrated challenges with mask fit. This work demonstrates the 
importance of not averaging all data to find one mask size. It is recommended that N95 manufacturers 
offer more sizes to better fit and protect users. Future work will look at using ML algorithms to automate 
landmarks, measure and analyze 3D scans for patterned geometries and sizing systems.  
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